

SECOND QUARTER PROGRESS REPORT L.E. CARPENTER SITE WHARTON, NEW JERSEY

VOLUME 1 OF 2

August 1996

Work Order No.: 06720-018-003-0002-00

Prepared on behalf of

L.E. CARPENTER AND COMPANY

For the

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION

Prepared by

ROY F. WESTON, INC.
Raritan Plaza III
Suite 2B
Raritan Center
Edison, New Jersey 08837

SECOND QUARTER PROGRESS REPORT L.E. CARPENTER SITE WHARTON, NEW JERSEY TABLE OF CONTENTS

Section		<u>Title</u>	<u>Page</u>
1.0	INTI	RODUCTION AND SCOPE OF WORK	1-1
	1.1	Investigative Activities - Soils	1-1
	1.2	Investigative Activities - Groundwater	1-2
	1.3	Product Recovery	1-2
2.0	SOII	L INVESTIGATION	2-1
	2.1	Inorganic Hot Spots	2-1
		2.1.1 Historical Site Use	
		2.1.2 Hot Spot B	
		2.1.3 Hot Spot C	
		2.1.4 Evaluation of Lead in Soils	
	2.2	Organic Hot Spot Delineation	2-6
		2.2.1 Hot Spot 1	
		2.2.2 Hot Spot 4	
		2.2.3 MW-19 Soil Delineation	
	2.3	Deviations from the Proposed Scope of Work	. 2-10
3.0	GRO	OUNDWATER INVESTIGATION	3-1
	3.1	Lead in Groundwater	3-1
	3.2	MW-19 Delineation	
	3.3	Monitoring Well Installation and Sampling	
	3.4	Percolation Testing	
	3.5	Water Level and Product Thickness Measurements	
	3.6	Product Delineation	
	3.7	Quarterly Groundwater Sampling	
	3.8	Deviations from the Proposed Scope of Work	

SECOND QUARTER PROGRESS REPORT L.E. CARPENTER SITE WHARTON, NEW JERSEY TABLE OF CONTENTS (CONTINUED)

<u>Section</u>		<u>Title</u>			
4.0	CONCLUSIONS AND RECOMMENDATIONS				
	4.1	Soils			
		4.1.1 Hot Spots B and C			
		4.1.2 Hot Spot 1			
		4.1.3 Hot Spot 4			
		4.1.4 MW-19 Area			
	4.2	Groundwater			
		4.2.1 MW-19 Area			
		4.2.2 Quarterly Groundwater Monitoring			
		4.2.3 Product Recovery			

SECOND QUARTER PROGRESS REPORT L.E. CARPENTER SITE WHARTON, NEW JERSEY TABLE OF CONTENTS (CONTINUED)

LIST OF APPENDICES

Appendix A - Figures Appendix B - Tables

Appendix C - Hot Spot Soil Delineation Data Package Summary Pages

Appendix D - Soil Boring Logs

Appendix E - Monitoring Well Construction Details

Appendix F - Groundwater Elevation/Product Thickness Data

Appendix G - Monitoring Well Sampling Data Forms
Appendix H - Groundwater Data Package Summary Pages

SECTION 1.0

INTRODUCTION AND SCOPE OF WORK

L.E. Carpenter and Company is pleased to submit this Second Quarter Progress Report for the former manufacturing facility located at 170 North Main Street, Borough of Wharton, Morris County, New Jersey. This report provides a summary of activities for the Second Quarter 1996, including routine groundwater monitoring and additional remedial design data collection activities. The remedial design activities include hot spot delineation efforts. The quarterly monitoring event was performed at the site to comply with Paragraph 35 of the 1986 Administrative Consent Order between L.E. Carpenter and Company and the New Jersey Department of Environmental Protection (NJDEP). The hot spot delineation activities were performed in accordance with the NJDEP-approved scope of work documents dated 27 September 1995 (Hot Spot 4 Delineation); 18 October 1995 (Contaminant Delineation Plan at MW-19); 22 February 1996 (Hot Spot 1 Delineation Plan); and "Attachment #1" of the letter report entitled Soil Data Compilation, L.E. Carpenter and Company, Wharton, New Jersey and dated 21 December 1995. All field activities were performed in compliance with NJDEP's Technical Requirements for Site Remediation (Technical Requirements, N.J.A.C. 7:26E et seq.)

In addition to the soil and groundwater sampling performed during this quarter, Roy F. Weston, Inc. (WESTON®), on behalf of L.E. Carpenter and Company, installed and sampled two groundwater monitoring wells and performed six percolation tests. The well installations and percolation tests were performed to comply with the NJDEP-approved scope of work dated 28 July 1995. Data from these monitoring wells and percolation tests will aid in the design of the appropriate remedial action for the site.

Sections 2.0 and 3.0 present a summary of all activities performed, samples collected, and analytical results obtained for soil and groundwater, respectively, during the investigative effort performed during the second quarter. Section 4.0 presents conclusions based on recent findings that supplement the existing physical and analytical database. Figures are provided in Appendix A and tables are provided in Appendix B.

1.1 INVESTIGATIVE ACTIVITIES - SOILS

Investigative efforts were performed to determine the nature of chemical constituents present in site soils, and to delineate the horizontal and vertical extent of concentrations in excess of the criteria presented in the Record of Decision (ROD) or the NJDEP's Soil Cleanup Criteria. Soil investigative activities completed during this quarter were intended to supplement the data previously collected in the vicinity of Hot Spot B, Hot Spot C, Hot Spot 1, Hot Spot 4, and MW-19. The resultant data supplements the existing environmental database.

×

1.2 INVESTIGATIVE ACTIVITIES - GROUNDWATER

To further our understanding of groundwater conditions at the site, WESTON collected quarterly groundwater samples from seven wells, measured water levels and the product thickness in monitoring wells and piezometers, installed and sampled two groundwater monitoring wells, collected two groundwater samples for lead analysis, and performed percolation tests. The findings of these investigative activities supplement the existing database, and provide additional data for evaluating the most efficient and cost-effective method for remediation of the remaining product and groundwater plume.

1.3 PRODUCT RECOVERY

The enhanced "passive" product recovery system at the site was removed from service throughout a portion of the second quarter due to the lack of product in the recovery points, and in order to accommodate field activities associated with the soil and groundwater investigations including the upcoming aquifer testing. The absence of product in many of the monitoring points can be attributed to successful product removal activities conducted prior to and during this quarter. In addition, natural conditions, (i.e., water table conditions and stratigraphic deposits at the water table and within the capillary fringe), may have reduced the volume of apparent product in many of the monitoring points, specifically the "B" (WP-B--) well points. During the system's operation, skimmer pumps were present in wells that historically contained an appreciable volume of floating product (MW-3, MW-10, MW-11S, and WP-B3).

During the second quarter, product was removed from several wells and well points by manual bailing. The majority of the product that was recovered via manual bailing was from MW-11S, WP-A6, and WP-A8. All recovered product was containerized in the above-ground storage tank located adjacent to the recovery system shed in the middle of the site or in secure 55-gallon drums. Manual bailing was performed on numerous days throughout the second quarter. The total volume of product that was manually bailed during this reporting period was approximately 28 gallons. This was in addition to the estimated 20 gallons of product which was collected by the "passive" recovery system during its activity this quarter. Therefore, a total volume of approximately 48 gallons of product was recovered during the quarter. The total cumulative volume of recovered product for 1996 is approximately 110 gallons.

SECTION 2.0

SOIL INVESTIGATION

This section following summarizes the soil investigation activities performed during the Second Quarter 1996. A discussion of the following items will be included in the description of actions taken at each area investigated:

- A summary of previously performed activities.
- A discussion of activities conducted during the Second Quarter.
- The results of the activities performed.

All referenced figures and tables are provided in Appendix A and B, respectively. The summary pages from the analytical data packages for the soil and groundwater samples are provided as Appendix C and H, respectively. Copies of the full analytical data packages will be provided upon conclusion of the project as part of the Remedial Action Report.

2.1 **INORGANIC HOT SPOTS**

During Second Quarter 1996 activities, inorganic Hot Spots B and C were further investigated. The following subsection provides relevant information regarding the historical presence of ore deposits on-site and their impact on natural soil conditions.

2.1.1 Historical Site Use

The Dover Magnetite District is one of the oldest mining districts in the country, and has been intermittently active since the early part of the 18th century. Most of this activity took place prior to 1940. The Mount Hope Mine, which was the last operating mine in the district, ceased operations in the mid 1980's. Ores found in the vicinity of Wharton, New Jersey make up what is known as the Wharton ore belt. The Washington Forge Mine was located directly on what is now the L.E. Carpenter property. The West Mount Pleasant Mine was also located on what is also part of the L.E. Carpenter property, approximately 170 feet northeast of the Washington Forge Mine.

The Mount Pleasant iron ore deposit consists predominantly of the metallic mineral magnetite, which is a magnetic iron oxide (FeO). Sulfide minerals, such as pyrite, chalcopyrite, and pyrrhotite are also reported ores from the Wharton ore belt. These minerals are important sources of arsenic, copper, lead, and zinc. Although abundant chemical analyses of the ores exist in the literature, all of the analyses of ores in the vicinity of the L.E. Carpenter property were performed prior to 1908. Due to limitations of the analytical technology of the time, these

analyses do not include constituents of the ores such as lead, chromium, nickel, zinc, and arsenic.

All of the ore that was shipped from the district prior to 1983 was hand-cobbed (or hand-picked), and ore that was shipped between 1893 and 1916 was in part hand-cobbed and in part concentrated on dry magnetic separators. In 1903, a magnetic concentrator was installed at the Orchard Mine, directly across the Rockaway River from the Washington Forge and West Mount Pleasant Mines (and the present location of the L.E. Carpenter property). Since this was a magnetic separation process, non-magnetic minerals (pyrite, chalcopyrite, and pyrrhotite) containing lead, chromium, nickel, zinc, and arsenic would have been enriched in the tailings.

Two inorganic hot spots were investigated during field activities conducted this quarter. These hot spots were identified during the remedial investigation and designated as Hot Spots B and C. Hot Spot B is located adjacent to the western loading dock of former Building 14. Hot Spot C is located adjacent to the southern corner of former Building 14. The following subsections present summaries of activities associated with each hot spot. Figures 2-1 through 2-5 in Appendix A present the lead soil sampling locations and corresponding analytical results.

2.1.2 <u>Hot Spot B</u>

Prior to conducting the Second Quarter 1996 investigation, Hot Spot B was excavated to a size of approximately 16 feet by 20 feet by 2 feet deep on 28 November 1994. One bottom and two sidewall post-excavation samples were collected. The analytical results indicated that lead was present at concentrations in excess of the site remedial goal for lead of 600 milligrams per kilogram (mg/kg). On 7 December 1994, additional excavation of Hot Spot B was performed. The approximate size of the expanded excavation was 28 feet by 28 feet by 4 feet deep. Four sidewall samples were collected from the expanded excavation, and an additional bottom sample was collected. The analytical results for the northwest and southwest sidewalls, and the bottom of the excavation indicated that lead was either detected at concentrations below the remedial goal, or not detected, and no additional excavation was required in those directions.

On 15 December 1994, the northeast and southeast sides of the excavation were extended approximately 5 feet, to a total excavation size of 33 feet by 33 feet by 4 feet deep. Two sidewall samples and an additional bottom post-excavation sample were collected from the expanded excavation. Analytical results indicated that the bottom sample was in compliance with the site remedial goals; but the sidewall samples indicated elevated lead concentrations as compared to the remedial objectives. On 20 December 1994, the northeast and southeast sidewalls of the Hot Spot B excavation were extended, to a total excavation size of approximately 41 feet by 38 feet by 4 feet deep. Three sidewall samples were collected from the expanded excavation sides. The analytical results of these samples also indicated the presence of lead at concentrations above the remedial goal. On 29 December 1994, additional excavation activities were conducted at Hot Spot B. At the conclusion of this excavation

activity, three additional sidewall samples were collected. The analytical results for these samples indicated concentrations in excess of the site remedial goal of 600 mg/kg for lead. Table 2-3 of the quarterly report dated April 1995 presents a summary of all of the analytical results for the samples collected from this hot spot. The existing analytical lead data are summarized on Figures 2-1 through 2-5 in Appendix A.

X

On 17 January 1995, WESTON contacted the NJDEP case manager to discuss the continued excavation of soils which exceed the site remedial goal. As indicated by the volume of soil excavated and review of the post-excavation data, the concentrations of lead in the samples are not indicative of hot spots caused by isolated releases of materials. Lead concentrations are believed to be an artifact of the fill historically deposited at the site.

On 21 December 1995, WESTON submitted a detailed letter report entitled <u>Soil Data Compilation</u>, L.E. Carpenter and Company, Wharton, New Jersey, which provides an evaluation of the nature and extent of lead present at the site. To confirm the conclusion that the presence of lead at the site is attributable to the presence of the fill material, and not related to practices conducted by L.E. Carpenter and Company, NJDEP required WESTON to prepare a work plan, (Attachment A of the above-referenced letter report dated 21 December 1995), for additional lead sampling.

In accordance with the scope of work presented in Attachment A of the 21 December 1995 letter report, WESTON collected 37 soil samples for lead analysis (including two field duplicate samples) from 12 soil borings in the vicinity of Hot Spot B. All samples, including the required quality assurance/quality control (QA/QC) samples (field blanks and duplicates) were collected in compliance with protocols presented in NJDEP's Field Sampling Procedures Manual dated May 1992, and the relevant Technical Requirements (N.J.A.C. 7:26E, et. seq.). Soil samples were collected using the split-spoon sampling method. Borehole advancement was performed using either the air rotary method, or if the borehole remained open, by driving continuous split-spoon samplers. A summary of the samples collected that are associated with Hot Spot B are presented in Table 2-1 in Appendix B. The sampling locations and analytical results are presented on Figure 2-2 in Appendix A. Boring logs are presented in Appendix D.

X

The analytical results acquired during the Second Quarter 1996 investigative effort indicate the presence of lead in every sample collected at a range of concentrations between 8.1 milligrams per kilogram (mg/kg) in sample SB-8-B (boring location SB-8, depth 2.0 to 2.5 feet below grade) and 5,040 mg/kg in sample SB-15C (location boring SB-15, depth 4.0 to 4.5 feet below grade). The site remedial goal of 600 mg/kg was exceeded in 21 samples of the 37 samples collected (which includes the duplicate samples) at various depths between grade and 4.5 feet below grade. Table 2-2 in Appendix B presents the sample depth, material sampled, and the analytical results of the samples collected. The samples in excess of the remedial goal are highlighted.

2.1.3 Hot Spot C

Prior to performing the Second Quarter 1996 investigation, Hot Spot C was excavated to an approximate size of 24 feet by 24 feet by 4 feet deep on 1 December 1994. Post-excavation sidewall and bottom samples were collected for lead and antimony analysis. Results of the sidewall samples indicated lead concentrations in excess of site-specific remedial goals; therefore, on 12 December 1994, the Hot Spot C excavation was expanded to approximately 35 feet by 35 feet by 4 feet deep. An additional five sidewall samples (plus one duplicate sample) were collected for lead analysis on 13 December 1994. The analytical results indicated that the samples collected from the southern sidewalls met the remedial goals for lead. Based on the analytical results, the northwest and northeast sidewalls were re-excavated on 20 December 1994. Two post-excavation samples were collected from the expanded excavation's sidewalls. The analytical results for these samples exceeded the site-specific remedial goals for the site. Based on these results, Hot Spot C was excavated to its present dimensions on 29 December 1994 and two additional sidewall samples were collected. The analytical results for these additional samples did not indicate compliance with the site remedial goal of 600 mg/kg for lead.

On 17 January 1995, WESTON contacted the NJDEP case manager to discuss the continued elevated lead concentrations in the post-excavation samples. As indicated by the volume of soil excavated and a review of the post-excavation data, the concentrations of lead in the samples are not indicative of hot spots caused by isolated releases of materials and are believed to be an artifact of the fill historically deposited at the site. Table 2-4 of the quarterly report dated April 1995 presents a summary of all of the analytical results for the samples collected from this hot spot. The existing analytical lead data are summarized on Figures 2-1 through 2-5 in Appendix A.

On 21 December 1995, WESTON submitted a detailed report entitled <u>Soil Data Compilation</u>, <u>L.E. Carpenter and Company</u>, <u>Wharton</u>, <u>New Jersey</u>, which provided an evaluation of the nature and extent of lead present at the site. To confirm the conclusion that the presence of lead at the site is attributable to the presence of historical fill, and not related to practices conducted by L.E. Carpenter and Company, NJDEP required WESTON to prepare a work plan (Attachment A of the 21 December letter report) for additional lead sampling.

WESTON collected 37 soil samples for lead analysis (including two field duplicate samples) in accordance with the scope of work presented in "Attachment A" of the 21 December letter report, from 12 soil borings in the vicinity of Hot Spot C. All samples, including the required QA/QC samples (field blanks and duplicates), were collected in compliance with protocols presented in NJDEP's Field Sampling Procedures Manual dated May 1992, and the relevant Technical Requirements (N.J.A.C. 7.26E, et. seq.). Soil samples were collected using the split-spoon sampling method. Borehole advancement was performed using either the air rotary method, or if the borehole remained open, by driving continuous split-spoon samplers. A summary of the samples collected that are associated with Hot Spot C are presented in Table 2-3

in Appendix B. Figure 2-3 in Appendix A presents the sampling locations and analytical results on an area-specific map. Boring logs are presented in Appendix D.

The analytical results acquired during the Second Quarter 1996 investigative effort for Hot Spot C indicate the presence of lead in every sample collected at a range of concentrations between 8.6 mg/kg in sample C-1-C (location C-1, depth 4.0 to 4.5 feet below grade) and 2,630 mg/kg in sample C-8-A (location C-8, depth 0.0 to 0.5 feet below grade). In sixteen samples collected at various depths between grade and 4.5 feet below grade, the site remedial goal of 600 mg/kg for lead in soil was exceeded. Table 2-4 in Appendix B presents the sample depth, material sampled, and the analytical results of the samples collected. The samples with detectable concentrations of lead in excess of the remedial goal are highlighted.

2.1.4 Evaluation of Lead in Soils

At the request of NJDEP, WESTON collected additional soil samples in order to confirm whether or not the lead concentrations detected in soils were attributable to surface spills and past L.E. Carpenter operations (i.e., hot spots), or the pervasive fill material present at the site. The focus of this evaluation was to:

- Evaluate the spatial distribution of lead relative to the previously identified hot spots (i.e, Hot Spot B and C).
- Delineate the boundary of soil concentrations in excess of 600 mg/kg.
- Confirm that lead concentration in site's soils was not impacting groundwater.

As part of the Second Quarter 1996 delineation activities, the existing soil analytical database was supplemented by the collection of soil samples for lead analysis from 24 soil borings. These locations were selected so that the resultant analytical data would characterize the distribution of lead within and surrounding the previously identified "Hot Spots" B and C in an attempt to delineate the extent of lead concentrations which are greater than 600 mg/kg.

Ninety soil samples (51 shallow soil samples, 39 deep fill samples) were collected from areas associated with Hot Spots B and C. The concentrations of lead in shallow fill samples ranged between 77 mg/kg and 2,630 mg/kg. The deep fill samples had lead concentrations that ranged from 8.1 mg/kg to 2,830 mg/kg.

The data indicates that lead concentrations in excess of the remedial goal of 600 mg/kg are prevalent throughout the fill material at the site. Neither a horizontal or vertical gradient exists. Of the 24 borings performed, 10 borings (SB-1, SB-3, SB-6, SB-8, SB-15, C-2, C-3, C-6, C-8, and C-12) indicated lead concentrations in samples collected at depth that were higher than concentrations detected in the surface sample collected from the same boring. The highest lead

X

concentration was detected in sample SB-15-C, at a depth of 4.0 feet to 4.5 feet below grade. This concentration was approximately twice that detected in sample SB-15-A, collected from the 0.6 foot to 1.0 foot below grade interval from the same boring; and was more than three times the concentration detected in the 2.5 feet to 3.0 feet below grade interval sample (SB-15-C) collected from that boring.

Review of the analytical data indicates that no horizontal or vertical gradient or trend can be established regarding the distribution of lead in soils. Further, the boundary of the extent of lead concentrations which exceed 600 mg/kg cannot be determined. The soil quality of the fill, which is known to be high in metals, suggest that lead concentrations are naturally elevated. The analytical data presented on Figures 2-2 and 2-3 for Hot Spots B and C; respectively, depict the random distribution of lead in site soils.

Two groundwater samples were also collected during Second Quarter 1996 from well points WP-A9 and WP-A7, and analyzed for total and dissolved lead (see Section 3.1). Both well points WP-A9 and WP-A7, are in proximity to Hot Spots B and C; respectively. Results indicated that lead was present at detectable concentrations, but below the GWQC referenced in the ROD of 10 micrograms per liter (μ g/L). It can be concluded from these analytical results that the presence of lead at concentrations in excess of 600 mg/kg in soil is not impacting groundwater quality in the shallow aquifer beneath the site.

The analytical data do not suggest that "hot spots" of elevated lead concentrations exist at the former L.E. Carpenter site. The random distribution of lead in soils is indicative of the quality of fill which is present and pervasive on-site. Remedial activities performed during 1994 removed an excess of 275 cubic yards of contaminated soil from Hot Spots B and C; compared to the 214 cubic yards originally planned. These remedial activities, which addressed those soils which may have been impacted as a result of their close proximity to loading and unloading operations at Building 14, combined with the engineering controls planned for the site (e.g., deed of environmental restriction and soil cover) will be protective of human health and the environment. As such, WESTON recommends that no further investigative or removal actions be taken in regards to soils impacted by lead on the site.

2.2 ORGANIC HOT SPOTS

Two organic hot spots were investigated during the field activities conducted during Second Quarter 1996. These hot spots were designated as Hot Spot 1 and Hot Spot 4. Hot Spot 1 is associated with former underground storage tanks E-3 and E-4. The compound of concern for Hot Spot 1 is bis(2-ethylhexyl)phthalate (DEHP). Additional soil investigative activities were conducted in the vicinity of Hot Spot 1 to determine the extent, if any, of volatile organic compounds (VOCs) associated with MW-19 in this portion of the site's soils. (The delineation of VOCs in soil associated with MW-19 is included in the following subsection presenting the data for Hot Spot 1). Hot Spot 1 and MW-19 are located to the west of Building 9. Hot Spot

4 is associated with a removed floor drain located within former Building 14. The chemical compound of concern associated with this hot spot is DEHP.

2.2.1 Hot Spot 1

Previous excavations were initiated at Hot Spot 1 on 30 November 1994. The approximate limit of excavation was 20 feet by 35 feet by 9 feet deep. A concrete pad, believed to be associated with the former tanks, was encountered in the bottom of the excavation. Due to the presence of the pad, a post-excavation bottom sample was not collected; however, four sidewall samples (plus one duplicate sample) were collected from the bottoms of the sidewalls.

The analytical results indicated that the samples collected from the southern and eastern sides of the excavation did not meet the remedial goals; therefore, on 6 December 1994, the excavation was expanded to the south and east. The south sidewall was extended to within 6 feet of Building 9, and the east sidewall was extended to within 5 feet of Monitoring Well MW-19. The depth of the excavation was limited to approximately 9 feet below grade due to the proximity of Building 9 and concern that increasing the depth of the excavation would undermine the building's foundation.

Three sidewall samples and one bottom sample were collected from the expanded excavation for analysis for DEHP on 6 December 1994. Analytical results indicated that the western extent of contamination had been delineated and remediated, but concentrations of DEHP were above the site-specific remedial goal on the eastern sidewall.

On 12 December 1994, the eastern sidewall of Hot Spot 1 was extended approximately 10 feet further. The southern edge of the eastern wall was not extended due to the presence of Monitoring Well MW-19 in the immediate vicinity of the excavation. Two additional samples were collected from the bottom of the extended excavation sidewall. These samples did not indicate compliance with the remedial goals specified in the ROD, therefore, on 14 December 1994, the eastern side of the excavation was extended an additional 10 feet. One sidewall and one bottom sample were collected. The analytical results did not indicate compliance with the site-specific remedial goals.

The eastern sidewall of the excavation was expanded an additional 10 feet on 20 December 1994, and two additional sidewall samples were collected. The analytical results for the samples collected on 20 December were less than the remedial goals specified in the ROD, indicating that the lateral extent of contamination had been delineated and remediated.

The total size of the excavation was approximately 70 feet long, ranged from 16 to 33 feet in width, and had an average depth of 9 feet below grade. A total of eight post-excavation soil samples were collected. Table 2-7 of the quarterly report dated April 1995 presents the

 \propto

analytical results for the post-excavation samples collected from this hot spot. Figure 2-6 in Appendix A presents the results of the post-excavation sampling on an area-specific map.

The NJDEP required WESTON to collect additional soil samples to further delineate the distribution of DEHP associated with Hot Spot 1. On 22 February 1996, WESTON submitted a delineation plan for Hot Spot 1 to the NJDEP.

To further delineate DEHP associated with Hot Spot 1, WESTON collected 11 soil samples, including one field duplicate sample, for DEHP analysis from six soil borings. All samples, including the required QA/QC samples (field blank and duplicate) were collected in compliance with protocols presented in the NJDEP's Field Sampling Procedures Manual dated May 1992, and the relevant Technical Requirements (N.J.A.C. 7.26E, et. seq.). Soil samples were collected using the split-spoon sampling method, and borehole advancement was performed using the air rotary techniques. In an attempt to reduce the possibility of cross-contamination between sampling depths/locations, the split-spoon samplers were steam cleaned after each use. A summary of the samples collected is presented in Table 2-5 in Appendix B. Figure 2-6 in Appendix A presents the locations of the delineation borings for Hot Spot 1 and the corresponding analytical results. Boring logs are presented in Appendix D.

The analytical results of the soil samples collected during the Second Quarter 1996 investigation indicate the presence of DEHP in all of the soil samples collected, and the field blank collected on 13 May 1996 (FB03S, 8 μ g/L). The detected concentrations of DEHP ranged between 2.6 mg/kg in sample B6-2 (location B6, 8 to 8.5 feet below grade), and 790 mg/kg in sample B3-2 diluted (location B3, 11.2 and 11.6 feet below grade). Analytical results of the soil samples B-1, B2A-1, B3-1, B4-1, B5-1, B6-1, and B6-2, that were collected at depths that correspond to above the water table are at concentrations less than the remedial goal. Analytical results of the soil samples B1-2, B2A-2 and B3-2, collected at depths that correspond to below the water table encountered in the borings, indicate the presence of DEHP at concentrations greater than the remedial goal. In sample B4-1, (location B4, 6.0 to 6.8 feet below grade) the concentration of DEHP (47 mg/kg - diluted) was less than the remedial goal of 100 mg/kg; however, its duplicate sample B4-2, the concentration of DEHP (130 mg/kg - diluted) was greater than the remedial goal. A heavy product sheen and product staining was identified in soil borings B1 (10.3 to 10.8 feet below grade) and B2 (10 feet below grade); respectively. In boring B-1, the 10.3 to 10.8 foot interval corresponds to a depth below the concrete pad used to secure the former USTs. Table 2-6 in Appendix B presents the sample depth and the analytical results of the samples collected. The samples with detectable concentrations of DEHP in excess of the remedial goal of 100 mg/kg are highlighted.

2.2.2 Hot Spot 4

Hot Spot 4 was excavated on 21 December 1994. The size of the excavation was approximately 21 feet by 21 feet by 3.5 feet deep. One bottom and three sidewall post-excavation samples were collected. Analytical results indicated that the extent of excavation had been defined and remediated on the northwest and southwest sides, but that further excavation was warranted on the northeast side and that the depth of the excavation had to be increased. On 29 December 1994, the depth of the excavation was increased to approximately 6 feet below grade. In addition, the sidewall was extended approximately 4 feet in the area where elevated DEHP concentrations were indicated. (Table 2-10 of the April 1995 quarterly report presents the analytical results of the samples collected from this hot spot).

The NJDEP required WESTON to collect additional soil samples to delineate the distribution of DEHP associated with Hot Spot 4. On 27 September 1995, WESTON submitted a delineation plan to the NJDEP outlining the scope of work to be completed during Second Quarter, 1996 to delineate the DEHP associated with Hot Spot 4.

To further delineate DEHP associated with Hot Spot 4, WESTON collected 12 soil samples, including a duplicate sample. All samples, including the required QA/QC samples (field blank and duplicate) were collected in compliance with protocols presented in the NJDEP's <u>Field Sampling Procedures Manual</u> dated May 1992, and the relevant Technical Requirements (N.J.A.C. 7.26E, et. seq.). All soil samples were collected using a decontaminated stainless steel sampling trowel, except for the soil samples collected from HS4-PES-10, where the split-spoon sampling method was employed. The borehole advancement was performed using the air rotary technique. A summary of the samples collected are presented in Table 2-7 in Appendix B. The sampling locations and the analytical data are presented on Figure 2-9 of Appendix A. A boring log for HS4-PES-10 is presented in Appendix D.

The analytical results of the soil samples collected during the Second Quarter 1996 investigation indicate the presence of DEHP in all of the soil samples collected. The detected concentrations of DEHP ranged between 8.1 mg/kg in sample 4-DEL-6 (location 4-DEL-6, 0.0 to 0.2 feet below grade), and 14,000 mg/kg in sample HS4-PES-10B - diluted - (location HS4-PES-10, 7.0 to 7.8 feet below grade). Both sample intervals in HS4-PES-10 were collected from depth intervals that correspond to below the water table, and the presence of DEHP in these samples may be attributed to product fluctuations. In three samples, the concentration of DEHP was in excess of the remedial goal. Table 2-8 in Appendix B presents the sample depth and the analytical results of the samples collected. The samples with detectable concentrations of DEHP in excess of the remedial goal of 100 mg/kg are highlighted.

2.2.3 MW-19 Soil Delineation

To further define the distribution of VOCs in soils in the vicinity of MW-19 and the former USTs from that area, a soil investigation was conducted as part of the Second Quarter, 1996 field activities. During this investigative effort, a total of 17 soil samples were submitted for VOCs plus 10 tentatively identified compounds (VOC+10) analysis, which includes a duplicate sample from nine soil borings performed in the vicinity of MW-19. All samples, including the required QA/QC control samples (field blank and duplicate) were collected in accordance with protocols presented in the NJDEP's Field Sampling Procedures Manual dated May 1992, and the relevant Technical Requirements (N.J.A.C. 7.26E, et. seq.). Soil samples were collected using the split-spoon sampling method, and the borehole was advanced using air rotary techniques. To reduce the possibility of cross-contamination between sampling depths/locations, the split-spoon samplers were steam-cleaned after each use. A summary of the samples collected are presented in Table 2-9 in Appendix B. Figure 2-7 presents the MW-19 delineation sampling locations. Boring logs are presented in Appendix D. Figure 2-8 presents a geologic cross section in the vicinity of Hot Spot 1 and MW-19.

The analytical results of the soil samples collected during the Second Quarter 1996 investigation indicate that target VOCs+10 were not detected at concentrations greater than the site-specific remedial objectives. Additionally, the NJDEP's criterion for total volatile organics (target plus tentatively identified compounds) was not exceeded at any of the sample locations. Table 2-10 in Appendix B presents the sample depth and the analytical results of the samples collected.

*

2.3 DEVIATIONS FROM THE PROPOSED SCOPE OF WORK

Due to field conditions encountered, the investigative scope of work concerning the soil issues was modified. Deviations from the proposed scope of work presented by areas of investigation concerning soil issues include the following:

Hot Spot B

- 1) A total of 12 soil borings were performed instead of the proposed 17 soil borings. The presence of the foundation backfilled with concrete precluded rig access and therefore soil samples could not be collected.
- 2) Soil sampling depths and intervals were modified in the field based on recovery. Table 2-1 presents the sampling depths and intervals.
- 3) A "deep" soil sample was not collected from SB-8 due to the nature of the material encountered during drilling and the poor recovery obtained by split-spoon sampling.

- 4) Field blanks were collected for each day of sampling.
- 5) Location modifications were required because of field constraints. The sampling locations are presented on Figure 2-2.

Hot Spot C

- 1) A total of 12 soil borings were performed instead of the proposed 14 soil borings. The presence of a foundation backfilled with concrete, and a steep fill embankment precluded rig access, and therefore soil samples could not be collected.
- 2) Soil sampling depths and intervals were modified in the field based on recovery. Table 2-3 presents the sampling depths and intervals.
- 3) A "deep" soil sample was not collected from C-13 due to the nature of the material encountered during drilling, and the poor recovery obtained by split-spoon sampling.
- 4) Field blanks were collected for each day of sampling.
- 5) Location modifications were required because of field constraints. The sampling locations are presented on Figure 2-3.

Hot Spot 1

- 1) A total of seven soil borings were performed instead of the six proposed. Soil boring B2 was redrilled and designated as B2A because the original boring was performed within the former footprint of the excavation.
- 2) Soil sampling depths and intervals were modified in the field based on recovery. Table 2-5 presents the sampling intervals and depths.
- 3) "Deep" soil samples were not collected from borings B4 and B5 due to the nature of the material encountered and the poor recovery obtained by split-spoon sampling.
- 4) Split-spoon samplers were steam-cleaned between sampling intervals in addition to using the NJDEP-required decontamination method for split-spoon samplers to reduce the possibility of cross-contamination.

5) Location modifications were required because of field constraints. The sampling locations are presented on Figure 2-6.

Hot Spot 4

- 1) Soil sampling depths and intervals were modified in the field based on recovery. Table 2-7 presents the sampling intervals and depths.
- 2) Location modifications were required because of field constraints. The sampling locations are presented on Figure 2-9.

MW-19 Delineation

- 1) Two soil samples were not collected from soil borings B-1 and B-9. At B-1 a second sample was not collected due to the nature of the material encountered and the poor sample recovery obtained by the split-spoon sampling method. At B-9, only one sample was collected because of the shallow water table, approximately 1.7 feet below grade.
- 2) Field screening results were consistently low, less than 5 units on the calibrated OVM, throughout the material recovered. Samples depths were biased toward stratigraphic changes, depths above the water table, and intervals throughout the vadose zone so that the vertical distribution of VOCs could be determined.
- 3) Soil sampling depths and intervals were modified in the field based on recovery. Table 2-9 presents the sampling intervals and depths.
- 4) Location modifications were required because of field constraints. The sampling locations are presented on Figure 2-7.
- 5) Three soil samples were collected at depth intervals that correspond to below the water table as determined by the depth to water measurements obtained from the temporary micro-wells.
- A jack hammer was used to advance the borehole at B-9 because of the access limitations of working in a building basement.

SECTION 3.0

GROUNDWATER INVESTIGATION

Groundwater investigation tasks completed during the Second Quarter 1996 include the following:

- 1) Evaluation of lead in groundwater (includes the collection of groundwater samples from well points WP-A7 and WP-A9).
- 2) Delineation of VOCs in groundwater in the vicinity of MW-19.
- 3) Installation and sampling of two groundwater monitoring wells.
- 4) Performance of percolation tests.
- 5) Monitoring of water level and product thicknesses.
- 6) Sampling of the monitoring wells identified for quarterly monitoring.

3.1 **LEAD IN GROUNDWATER**

Table 3-1 in Appendix B presents a summary of groundwater lead data, including the groundwater samples acquired from WP-A7 and AP-A9 during Second Quarter 1996, collected during the remedial investigation and subsequent quarterly sampling events. As the table indicates, lead was seldom detected in groundwater samples at concentrations greater than the relevant Groundwater Quality Criteria (GWQC) referenced in the ROD of 10 ug/L. Lead concentration exceeded the criterion in only 6 of 74 samples. Samples collected from the four monitoring wells sampled during the fourth round of RI sample collection (MW-22, MW-23, MW-24, and MW-25) were analyzed for total and soluble lead. While the total lead concentrations in samples collected from each well were greater than the criterion of 10 μ g/L, the soluble lead concentrations in samples from each well were not detectable at 3 μ g/L. This result suggests that the lead concentrations detected in the "total" lead samples are attributable to lead adsorbed to (or part of) the silt present in the water samples. concentrations in groundwater samples collected in the immediate vicinity of the fill present over much of the site do not indicate that groundwater quality has been impacted by the lead concentrations present in the fill material. Additionally, the distribution of lead in groundwater at concentrations slightly in excess of the GWQC does not correlate with the product, and volatile organic and semivolatile groundwater plume delineated on site.

Groundwater samples were collected in July 1996 from well points WP-A7 and WP-A9 for total and soluble lead. These sampling locations were selected because they were located in the area where soil analytical data suggested that lead levels in the fill were highest. The samples were collected via a peristaltic pump using low-flow sampling techniques to minimize silt content and to collect a groundwater sample from beneath the floating product. Two samples were collected from each well point. The first sample collected from each sampling location was submitted for total lead concentration, while the second sample was field filtered using a 0.45-micron filter. The filtered sample was submitted for soluble lead analysis. All samples were field-preserved with nitric acid. The analytical data package is included as Appendix H.

The analytical results for these samples indicated that lead was detected at low concentrations in the four samples collected. In WP-A7, the soluble and total lead results were 2.8 μ g/L and 1.6 μ g/L; respectively. In WP-A9, the soluble and total lead results were 2.3 μ g/L and 2.2 μ g/L; respectively. The use of low-flow sampling techniques have resulted in "total" lead groundwater samples that are representative of aquifer conditions. These results indicate that the lead concentrations detected in the fill present at the site, specifically in the vicinity of Hot Spots B and C, have not impacted groundwater quality and that lead is therefore not a compound of concern.

3.2 MW-19 DELINEATION

Results of previous groundwater sampling events conducted at MW-19 indicate the presence of select VOCs, primarily toluene and xylenes (total). To further define the extent of the VOCs in groundwater, WESTON submitted a delineation plan dated 18 October 1995 to the NJDEP.

To complete the scope of work presented in the 18 October 1995 correspondence, WESTON collected nine groundwater samples for VOC+10 Tentatively Identified Compounds and 2butanone (including the one field duplicate sample). All samples including the required QA/QC samples were collected in compliance with protocols presented in the NJDEP's Field Sampling Procedures Manual dated May 1992, the relevant Technical Requirements (N.J.A.C. 7.26E, et. seq.), and the NJDEP's Alternative Ground Water Sampling Techniques dated July, 1994. The groundwater samples were collected using a laboratory decontaminated teflon bailer attached to a teflon-coated stainless steel leader. The samples were collected from a location consisting of dedicated, passively placed, temporarily installed, two-inch diameter polyvinyl chloride (PVC) diameter well points (micro-wells) set in the shallow portion of the aquifer. Each micro-well was bailed of three to five volumes prior to sample acquisition. At location B-9, the boring conducted within the basement of the building, the sample was collected by lowering a laboratory-decontaminated bailer directly into the borehole and acquiring a sample without bailing. At no locations was a separate phase liquid encountered. All micro-wells were removed within 48 hours of installation. A summary of the samples collected that are associated with the MW-19 groundwater delineation are presented in Table 3-2 of Appendix B. Figure 2-7 in Appendix A presents the sampling locations and analytical results of concentrations in excess

of remedial goals on a scaled drawing. Boring logs and micro-well construction details are presented in Appendices D and E; respectively.

The analytical results of this investigative effort indicated a limited distribution of VOCs in this area. No target VOCs were detected in samples BW-1 and its' duplicate BW-11 (boring location B1), BW-6 (boring location B-6), and BW-9 (boring location B-9). In samples BW-3 (boring location B-3), BW-5 (boring location B-5), BW-7 (boring location B-7), and BW-8 (boring location B-8), detectable concentrations of target VOCs, specifically toluene, 2-Butanone, 4-methyl-2 pentanone, total xylenes, and acetone, were detected at concentrations below their applicable GWQC. In sample BW-2 (boring location B-2), toluene (200,000 micrograms per liter - μ g/L), ethylbenzene (7,600 μ g/L), and total xylenes (41,000 μ g/L) were detected at concentrations above GWQC. In sample BW-4 (boring location B-4), toluene (200,000 μ g/L), ethylbenzene (7,600 μ g/L), and total xylenes (38,000 μ g/L) were detected at concentrations above GWQC. The presence of these elevated concentrations in samples BW-2 and BW-4 required that the method detection limits (MDLs) be elevated. The MDLs are presented with the analytical results in Table 3-3 in Appendix A.

3.3 MONITORING WELL INSTALLATION AND SAMPLING

Two monitoring wells were installed to further delineate the extent of impacted groundwater in the shallow aquifer beneath the site. Monitoring Well MW-26 was installed to identify groundwater quality and groundwater flow conditions in the northeast portion of the site. Monitoring Well MW-12R was installed at the request of NJDEP to replace the former MW-12 well cluster that was abandoned for the remediation of Hot Spot 6. During the excavation of Hot Spot 6, clay was observed at a depth of approximately 7 feet below grade. This clay material was not identified on the boring log for the MW-12 cluster that was installed by a previous consultant. To further investigate the effect of this clay material on groundwater flow and contaminant migration, the NJDEP requested that L.E. Carpenter install a monitoring well. Figure 3-1 in Appendix A presents the monitoring network at the site.

Pilot hole borings were performed at each of the locations where monitoring points were installed. Pilot/soil boring logs are provided in Appendix D. Boreholes were advanced utilizing air rotary drilling techniques. During the drilling of these pilot holes, split-spoon samplers were driven as often as conditions permitted to identify the stratigraphic sequence. A clay material was encountered in MW-12R at approximately 6.5 feet below grade; however, only approximately 3 inches were recovered in the continuously sampled borehole. A double-cased monitoring well was not installed because of the thin, less than 0.5 foot of layer of clay. Product was identified in the soil recovered from below the clay material. At MW-26, no elevated readings were detected on the calibrated OVM.

Monitoring well installation and development were performed in accordance with NJDEP procedures. Well screening intervals were set to straddle the water table so that the presence

of a Light Non Aqueous Phase Liquid could be identified, if present. All tubing used in the well development was clean and dedicated to a specific well.

Both monitoring wells are of similar construction. Each of the wells was constructed of flush threaded Schedule 40 PVC screen and riser. MW-12R has a 12 foot screen set to straddle the water table. MW-26 has a 10 foot screen set to straddle the water table. Both wells were completed with stick-up protective steel casings. The specific well completion details are presented on the monitoring well construction logs presented in Appendix E.

The monitoring wells were developed using the pump and surge, and over pumping techniques. MW-26 was developed using a centrifugal pump and a dedicated drop line. The short-term yield of this well is approximately 6 gallons per minute (gpm). MW-12R was developed using a submersible pump. The short term yield of this well is approximately 5 gpm. All development fluids from MW-12R were containerized in 55-gallon drums.

On 8 July 1996, groundwater samples from MW-12R and MW-26, and the NJDEP required QA/QC samples (field blank, trip blank, and duplicate) were collected. Samples collected were analyzed by U.S. EPA Method 602 for BTEX and by U.S. EPA Method 625 for DEHP.

Groundwater samples were collected in accordance with protocols provided in the NJDEP's Field Sampling Procedures Manual (May 1992). Each well was purged of three to five well volumes of groundwater prior to sampling utilizing laboratory-decontaminated teflon bailers. The laboratory-decontaminated teflon bailers were attached to a decontaminated, teflon-coated stainless steel leader.

During well purging procedures, field measurements were obtained using a calibrated YSI 3560 Water Quality Monitoring System (temperature, specific conductivity, pH, and millivolts). A calibration check was conducted on 8 July 1996 prior to sampling. During the purging of MW-12R, the instrument malfunctioned and no readings were collected. The well purge data are presented on completed groundwater sampling forms presented in Appendix G.

Groundwater samples were collected upon completion of well purging. The laboratory-decontaminated teflon bailer was used to collect the sample from the wells. The bailer was lowered slowly into the well to avoid aeration of the groundwater sample, retrieved, and then the sample was transferred into the laboratory-provided sample bottles. All samples were labelled and placed in a laboratory cooler on ice (4°C). The samples were subsequently transported to the laboratory within 24 hours of collection for analysis.

A field blank was collected as required by the NJDEP's <u>Field Sampling Procedures Manual</u> dated May 1992. The field blank, designated as 070896, was obtained by pouring laboratory-provided analyte-free water over a laboratory-decontaminated teflon bailer. The field blank was

analyzed for BTEX and DEHP. A laboratory-prepared trip blank was included with the samples and analyzed for BTEX.

Duplicate samples were collected at a rate of 5% of the total number of groundwater samples collected per analyte throughout the sampling event. As per the 5% frequency, one duplicate sample (designated as MW-31) was collected during this quarterly sampling event.

The analytical data was compared to the criteria presented in the ROD and the NJDEP's Groundwater Quality Criteria. The comparison indicated that in MW-12R, ethylbenzene, xylenes (total), and DEHP were detected at concentrations above the applicable criteria. In MW-26, none of the VOC parameters were detected at concentrations above criteria. DEHP was detected at 69 μ g/L.

Analytical data concerning the distribution of BTEX and DEHP were compiled as part of the quarterly groundwater sampling effort. The BTEX and DEHP results are presented on Tables 3-4 and 3-5 in Appendix B; respectively.

3.4 PERCOLATION TESTING

Percolation tests were conducted on 8 and 9 May 1996, to identify the vadose zone's ability to accept water and identify percolation rates at different locations and depths across the site. These tests were conducted to supplement the information obtained from percolation tests conducted in January 1995. The location of the percolation test holes are presented on Figure 3-2 in Appendix A.

Percolation tests were conducted at six boreholes identified as PERC-4, PERC-5, PERC-6, PERC-7, PERC-8, and PERC-9. Each test hole was advanced by drilling a 8-inch diameter borehole utilizing air drilling rotary techniques. The completion depths of the boreholes were PERC-4 (2.0 feet below grade), PERC-5 (1.9 feet below grade), PERC-6 (3.4 feet below grade), PERC-7 (1.8 feet below grade), PERC-8 (3.4 feet below grade), and PERC-9 (6.05 feet below grade). The material encountered in the boreholes was identified by logging cuttings brought to the surface, observing the sidewalls of the borehole, and collecting split-spoon samples. Boring logs are presented in Appendix D. Due to the nature of the material encountered, 6-inch diameter slotted PVC was installed in each borehole to keep it from collapsing.

Percolation tests were performed in accordance with N.J.A.C. 7:9A-6.4. Water level measurements collected during the percolation tests were measured from fixed measuring points marked on the PVC casing.

An initial pre-soak period prior to the percolation tests consisted of maintaining at least 12 inches of water in each test hole for a period of four hours. At the end of four hours, water was no longer added to the holes. The holes were then allowed to drain for approximately 22 hours.

If water remained in the hole after the pre-soak period, the test was terminated and the percolation rate was reported as greater than 60 minutes per inch. If no water remained in the test holes after the pre-soak effort, the percolation rates were determined utilizing a 2-step process. This process is summarized below:

Step One - First, the hole was filled with 7 inches of water. At a 5- to 30-minute time interval, depending on the water's rate of fall, the drop in water level was measured to the nearest one-tenth of an inch. The time interval used for each hole was 5 minutes. After the time interval was complete, the hole was refilled with water to 7 inches and the procedure was repeated until a constant rate of fall was attained. A constant rate of fall was attained when the difference between the highest and lowest of three consecutive measurements was within two-tenths of an inch. Table 3-6 in Appendix B presents the water levels in each hole during Step One.

<u>Step Two</u> — The test hole was refilled with approximately 7 inches of water and the time required for exactly 6 inches of water to seep away was recorded. This value divided by six is the percolation rate in minutes per inch for that soil. Table 3-7 in Appendix B presents the water levels collected during this step.

Water remained in PERC-4, PERC-5, and PERC-8 after the pre-soak period, so their percolation rates were determined to be greater than 60 minutes per inch. It took approximately 11 and 9 minutes for 6 inches of water to seep out of PERC-6 and PERC-9, respectively. Thus, PERC-6 has a percolation rate of 1.9 minutes per inch and PERC-9 has a rate of 1.5 minutes per inch. The percolation test was not completed at PERC-7; however, the rate was identified as greater than 60 minutes per inch.

3.5 WATER LEVEL AND PRODUCT THICKNESS MEASUREMENTS

A synoptic round of water level and product thickness measurements was collected from the site's monitoring wells, well points, and staff gauges on 13 June 1996. Appendix F presents these measurements. Water levels were measured in all of the existing monitoring points with the exception of well point WP-A4, which is a flush mount piezometer located beneath a former soil staging area; well point WP-A2, which has a bent casing/riser; river point RP-1; drainage channel points DC-P1 and DC-P5, which were inaccessible due to high water levels; and monitoring wells MW-22 and MW-24, which had obstructions in the well casings. Water level and product thickness measurements were obtained using either a calibrated oil/water interface probe or an electronic water level indicator.

Corrected water level elevations were within the historic range of water levels collected during this period. A review of these data indicate that there was a general decrease in corrected water level elevations in the majority of the points which comprise the monitoring network.

The only well which did not exhibit a decrease was MW-17D, which had the same water level elevation as it did during First Quarter 1996. Also, drainage channel points DC-P0, DC-P2, and DC-P4 increased by 1.11 feet, 0.43 foot, and 0.79 foot, respectively. The downward fluctuations in corrected groundwater elevations ranged between 0.22 foot at RP-02 to 2.46 feet at MW-22. This general decrease in corrected water level elevations can be attributed to the amount of precipitation during the Second Quarter 1996 reporting period (April through June) as compared to First Quarter 1996.

Equipotential maps of the shallow and intermediate aquifer zones were constructed based on the results of the 13 June 1996 monitoring event. Groundwater flow direction and gradients are consistent with earlier monitoring events. Groundwater in the shallow zone generally flows from the Rockaway River, across the site, towards the east/northeast. Groundwater flow in the intermediate zone is similar, but directed more to the southeast than during First Quarter 1996. The equipotential maps for the shallow and intermediate aquifer zones are presented in Appendix A on Figures 3-3 and Figure 3-4, respectively.

3.6 **PRODUCT DELINEATION**

Product delineation was performed by measuring product thickness in each monitoring point in which product was encountered. At each location where product was encountered, its thickness was measured using an oil/water interface probe, to one hundredth (0.01) of a foot.

Product was encountered in 17 of the monitoring points. Nine wells (MW-2, MW-7, MW-11S, WP-A1, WP-A7, WP-A8, WP-B3, WP-B4, and WP-B7) exhibited an increase in product thickness, while seven wells (MW-3, MW-4, MW-6R, WP-A5, WP-A6, WP-A9, and WP-B5) exhibited a decrease in product thickness. An isopach map of apparent product thickness is provided in Appendix A on Figure 3-5.

The greatest layer of apparent product thickness was 3.74 feet in WP-A6. The product footprint remained similar to that during First Quarter 1996, and has remained relatively consistent throughout the 1994 and 1995 product monitoring events.

3.7 **OUARTERLY GROUNDWATER SAMPLING**

On 14 June 1996, groundwater samples were collected from six on-site monitoring wells as part of the revised quarterly sampling program, which was initiated during the Second Quarter 1995 sampling event. Samples collected during this sampling round were analyzed by U.S. EPA Method 602 for BTEX and by U.S. EPA Method 625 for DEHP. Envirotech Research, Inc., a NJDEP-certified laboratory, was utilized for sample bottle preparation and sample analyses. A groundwater sample was not collected from Monitoring Well MW-22 because the Well Wizard pump is in disrepair. On 8 July 1996, a sample was acquired from MW-22 by utilizing

a peristaltic pump and well-dedicated discharge line. Table 3-8 in Appendix B presents a quarterly sampling summary.

Groundwater samples were collected in accordance with protocols provided in the NJDEP's <u>Field Sampling Procedures Manual</u> (May 1992). Each well was purged of three to five well volumes of groundwater prior to sampling utilizing a laboratory-decontaminated teflon bailer or a dedicated well wizard pump (MW-25). The laboratory-decontaminated teflon bailers were attached to a decontaminated teflon coated stainless steel leader.

During well purging procedures, field measurements were obtained using a calibrated YSI 3560 Water Quality Monitoring System (temperature, specific conductivity, pH, and milli-volts). A calibration check was conducted on 14 June 1996 prior to sampling. A minimum of two readings (initial and final) was collected during each well's purge procedures. These data are presented on the completed groundwater sampling forms presented in Appendix G.

In MW-22, xylenes (total) was the only compound detected in excess of the relevant NJDEP criteria. During the Second Quarter 1996, all other detected concentrations were below the relevant criteria. In MW-4, ethylbenzene was detected at 7.0 μ g/L, and xylenes (total) was detected at 7.8 μ g/L. Both concentrations are below GWQC referenced in the ROD, and the concentrations detected in MW-4 during the First Quarter, 1996 sampling event. In MW-22, ethylbenzene was detected at 258 μ g/L which is below the NJDEP criteria. During the 1995 quarterly sampling events xylenes (total) in MW-22 was consistently detected at concentrations in excess of GWQC referenced in the ROD.

DEHP was detected at concentrations above the applicable GWQC referenced in the ROD criteria in the quarterly samples collected at MW-4 and MW-22. DEHP was detected at 9,300 μ g/L (MW-4) and 70 μ g/L (MW-22). During the 1995 quarterly sampling events, DEHP in MW-4 and MW-22 was consistently detected at concentrations in excess of GWQC.

3.8 <u>DEVIATIONS FROM THE PROPOSED SCOPE OF WORK</u>

Due to field conditions encountered, the investigative scope of work concerning the groundwater issued was modified. Deviations from the proposed scope of work concerning groundwater investigation activities include the following:

Lead Groundwater Data

1) Two well points, WP-A7 and WP-A9, were sampled for total and soluble lead analysis to identify whether the lead identified in the fill material was affecting shallow groundwater quality.

MW-19 Delineation

- 1) The proposed locations were modified to allow for rig access. The locations sampled are presented on Figure 2-7.
- 2) Geoprobe, hydropunch, and hollow stem auger drilling techniques for groundwater sample acquisition were determined to be ineffective because of the geologic materials that comprise the site (i.e., boulders and cobbles). As a result, passively placed narrow-diameter points (micro-well) were utilized for the collection of groundwater screening samples, except for the groundwater sample taken from B-9 located in the basement of a building.
- 3) A bailer was lowered directly into the groundwater for the collection of groundwater sample B-9.

Groundwater Sampling

- 1) A groundwater sample was acquired from MW-22, using a peristaltic pump and well-dedicated discharge line.
- 2) Groundwater samples were collected from the two newly installed wells and analyzed for BTEX and DEHP.

SECTION 4.0

CONCLUSIONS AND RECOMMENDATIONS

The following summarizes the conclusions and recommendations for each specific area investigated. The conclusions and recommendations detailed below are based upon the evaluation of the Second Quarter 1996 data as well as the existing data collected prior to this quarter.

4.1 SOILS

The conclusions and recommendations for each of the areas concerning soil issues are presented in the following subsections.

4.1.1 Hot Spots B and C

A summary of lead data generated during the remedial investigation and post-excavation remedial action sampling efforts were tabulated and presented in a letter to the NJDEP dated 21 December 1995. At the request of the NJDEP, WESTON on behalf of L.E. Carpenter, performed a series of 24 soil borings from which soil samples were collected at different depths. Twelve of these borings associated with each hot spot. A graphical depiction of lead concentrations detected in all soil samples collected during the all phases of the investigation is provided on Figures 2-1 through 2-5.

The analytical database contradicts the concept of defined "hot spots" associated with former L.E. Carpenter operations (i.e., loading docks). The random distribution of lead in soils is indicative of the quality of fill prevalent throughout the site. The extent or boundary of soils with lead concentrations greater than 600 mg/kg cannot be determined horizontally or vertically. In addition, groundwater samples collected from WP-A9 and WP-A7, which are located in proximity to Hot Spots B and C indicate that the lead present in the soil and fill is not adversely impacting groundwater quality beneath the site. Based on this information, it is concluded that the engineering controls that are planned for the site (e.g., deed of environmental restriction and soil cover) will be protective of human health and the environment even with the naturally elevated lead concentrations remaining. As such, WESTON recommends that no further investigative or removal actions be taken to address these soils.

4.1.2 Hot Spot 1

During Second Quarter 1996, soil samples were collected at different vertical intervals throughout the soil column in the vicinity of Hot Spot 1. Elevated concentrations of DEHP in excess of the remedial objective of 100 mg/kg were detected in soils at or below the

groundwater table. Soil samples collected above this zone of groundwater influence exhibit DEHP concentrations below the remedial objective. As such, it has been demonstrated that the presence of DEHP in the soils in the vicinity of Hot Spot 1 is related to the result of fluctuating water table conditions.

Based on the soil analytical data collected during the previous Hot Spot 1 excavation and the Second Quarter 1996 sampling activities in the vicinity of Hot Spot 1, no further remedial activities relating to soil are recommended. Conclusions and recommendations pertaining to the groundwater quality in this area are provided in Section 4.2.

4.1.3 Hot Spot 4 WAPL

Soil samples collected during Second Quarter 1996 indicate that the areas of DEHP concentrations in excess of the remedial goal is limited to 4-DEL-2, HS4-PES-10B, and HS4-PES-10C. Samples collected from boring HS4 were collected at depths that correspond to below the water table. The presence of DEHP in these samples can be attributed to the Light Non-Aqueous Phase Liquid (LNAPL) in this portion of the site. DEHP at these depths will be addressed during the remediation of groundwater. The presence of a elevated concentration of DEHP at location 4-DEL-2 indicates the horizontal extent of DEHP associated with this hot spot. "Clean zones", or locations where the concentrations of DEHP are below the remedial goal, were identified in the delineation samples 4-DEL-1, 4-DEL-6, 4-DEL-3, and 4-DEL-7 that surround 4-DEL-2.

It is recommended that approximately 32 cubic yards of additional soil be removed. The extent of the excavation would include sample location 4-DEL-2. The delineation samples 4-DEL-1, 4-DEL-6, 4-DEL-3, and 4-DEL-7 that surround 4-DEL-2 would serve as post-excavation samples, and therefore no additional soil samples would be collected. Consistent with the ROD, the excavated soils will be moved to the former Waste Disposal Area which lies within the planned treatment zone.

4.1.4 MW-19 Area

During Second Quarter 1996, soil samples were collected at different vertical intervals throughout the soil column in the vicinity of MW-19. The resultant analytical data indicated that VOCs were not detected at concentrations greater than the site-specific remedial objectives. As a result, no further investigative or remedial actions are required for these soils.

4.2 **GROUNDWATER**

The conclusions and recommendations for each of the areas concerning groundwater issues are presented in the following subsections.

4.2.1 MW-19 Area

Target VOCs were detected at concentrations in excess of the GWQC referenced in the ROD at two locations sampled during the delineation in the vicinity of MW-19. These samples are designated as BW-2 and BW-4. Both of these samples were collected in proximity to the former USTs.

The delineation of the limited VOC plume in groundwater is partially complete. Water level data have consistently indicated that groundwater flow is away from Washington Forge Pond and toward the site. As a result, the plume has been delineated to the west (upgradient, Sample BW-1), to the south (Samples BW-3 and BW-9), and toward the east (downgradient, Samples BW-5, BW-6, BW-7, and BW-8). Additional groundwater delineation is required to the north along the site boundary with Ross Street (in proximity to the location where BW-2 was collected).

To further delineate the impacted portion of the aquifer in the vicinity of MW-19, additional investigative activities are proposed. These investigative activities include the collection of groundwater screening samples, the installation and sampling of an additional monitoring well, and the sampling of two existing monitoring wells.

WESTON proposes to install three soil borings using the air rotary drilling technique at locations presented on Figure 4-1. During this drilling, split-spoon samples will be collected as often as conditions allow, and will be field-screened using a calibrated OVM.

Upon penetrating the water table, a temporary 2-inch diameter PVC passively placed well points will be installed and sampled according to procedures presented in the NJDEP's <u>Alternative Ground Water Sampling Techniques Guide</u>, dated July 1994. A sample will be collected from each location. All samples will be analyzed for BTEX and DEHP by a NJDEP-certified laboratory on a quick turnaround basis. Based upon conditions encountered and analytical results, contingent delineation borings/groundwater screening locations and the possible modification of a temporary well point to a permanent monitoring well will be considered.

A single 4-inch diameter PVC monitoring well will be installed in the vicinity of the Boring B1 completed during Second Quarter 1996 activities. During the drilling of the monitoring well's pilot hole, split-spoon samples will be collected and field-screened with a calibrated OVM. This proposed well will be installed with a well screen set to straddle the water table so that the presence of non-aqueous phase liquids, if present, can be monitored. This well will be installed in compliance with all relevant NJDEP procedures and regulations.

Upon installation and development of the monitoring well, a groundwater sample will be collected in compliance with applicable NJDEP protocols. The sample will be analyzed for BTEX and DEHP by a NJDEP-certified laboratory.

Existing wells MW-19 and GEI-2S will be sampled according to applicable NJDEP protocols. The samples will be analyzed for BTEX and DEHP by a NJDEP-certified laboratory.

Analytical results of this proposed groundwater investigation will supplement the existing database. The cumulative analytical data will be used to identify the horizontal and vertical extent of chemically impacted groundwater in this portion of the aquifer.

4.2.2 Quarterly Groundwater Monitoring

Water level and product thickness measurements collected during Second Quarter 1996 identified groundwater flow conditions at the site. Evaluation of the resultant data indicate that flow directions and hydraulic gradients in the shallow and intermediate aquifer zones are similar to preceding monitoring events.

Analytical results of samples collected during Second Quarter 1996 from the monitoring wells sampled on a quarterly basis indicate that the extent of the groundwater plume has remained consistent, and the detected concentrations of chemical constituents of concern are similar to previous quarterly sampling results. In addition, the supplemental analytical data obtained by sampling the newly installed monitoring well designated MW-26, delineates a northeastern boundary of the groundwater plume identified on-site.

4.2.3 Product Recovery

Product recovery at the site has proven to be effective based on the volume of product recovered, and the limited apparent product thickness measured in the site's monitoring points. A total of approximately 110 gallons of product has been recovered in 1996 of which approximately 48 gallons were recovered during Second Quarter 1996. Product recovery by operation of the enhanced product recovery system, and manual bailing will continue into the upcoming quarters.

SECOND QUARTER PROGRESS REPORT L.E. CARPENTER SITE WHARTON, NEW JERSEY

VOLUME 2 OF 2

August 1996

Work Order No.: 06720-018-003-0002-00

Prepared on behalf of

L.E. CARPENTER AND COMPANY

For the

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION

Prepared by

ROY F. WESTON, INC.
Raritan Plaza III
Suite 2B
Raritan Center
Edison, New Jersey 08837

APPENDIX A FIGURES

APPENDIX A

LIST OF FIGURES

Figure No.	<u>Title</u>	<u>Page</u>
2-1 -	Lead Concentrations in Soil Samples	. A-1
2-2	Lead Concentrations in Soil Samples, Hot Spot B	. A-2
2-3	Lead Concentrations in Soil Samples, Hot Spot C	
2-4	Lead Concentrations in Soil Samples, Hot Spot D	
2-5	Lead Concentrations in Soil Samples, Waste Disposal Area	
2-6	Hot Spot 1 Delineation Sampling Locations and Analytical Results	. A-6
2-7	MW-19 Delineation Sampling Locations and Analytical Results	
2-8	Geologic Cross Section A-A', Vicinity of Hot Spot and MW-19	. A-8
2-9	Hot Spot 4 Delineation Sample Locations and Results	. A-9
3-1	Monitoring Well Locations	
3-2	Percolation Test/Test Boring Locations	
3-3	Equipotential Map of Shallow Aquifer Zone Measured on 13 June 1996	
3-4	Equipotential Map of Intermediate Aquifer Zone Measured on 13 June 1996	
3-5	Isopach Map of Product Thickness Measured on 13 June 1996	
4-1	Proposed Sampling Locations MW-19 Delineation	

LECEND

SCREENED INTERVALS IN TEMPORARY WELL POINTS AND MONITORING WELLS

GEOLOGIC CONTACTS (DASHED WHERE INFERRED)

NOTE: STRATIGRAPHIC SEQUENCE AT MW-19 AND GEI-2S ARE BASED ON NEARBY SECOND QUARTER, 1996 SOIL BORING DATA.

SCALES

HORIZONTAL
VERTICAL
VERTICAL EXAGGERATION
DATUM

SX
WATER TABLE; MAY 1996
(BASED ON DEPTH TO WATER READINGS
IN TEMPORARY WELL POINTS AND
MONITORING WELL MW-19 AND GE1-2S)

PROJECT NAME: SECOND QUARTER 1996
PROGRESS REPORT

GEOLOGIC CROSS SECTION A-A' VICINITY OF HOT SPOT 1 NEW JERSEY

AND MW-19 FIGURE #:

2-8

JULY 1996

L.E. CARPENTER

APPENDIX B

TABLES

APPENDIX B

LIST OF TABLES

Table No.	<u>Title</u>
2-1	Summary of Soil Sampling Activities, Hot Spot B
2-2	Analytical Results Summary for Soils, Hot Spot B
2-3	Summary of Soil Sampling Activities, Hot Spot C
2-4	Analytical Results Summary for Soils, Hot Spot C
2-5	Summary of Soil Sampling Activities, Hot Spot 1
2-6	Analytical Results Summary for Soils, Hot Spot 1
2-7	Summary of Soil Sampling Activities, Hot Spot 4
2-8	Analytical Results Summary for Soils, Hot Spot 4
2-9	Summary of Soil Sampling Activities, MW-19 Delineation
2-10	Analytical Results Summary for Soils, MW-19 Delineation
3-1	Summary of Lead in Groundwater Analytical Results
3-2	Summary of Groundwater Screening Sampling Activities, MW-19 Delineation
3-3	Analytical Results Summary for Groundwater, MW-19 Delineation
3-4	Second Quarter Analytical Results, BTEX
3-5	Second Quarter Analytical Results, DEHP
3-6	Water Level Measurements Taken on 9 May 1996 During Step One of the Percolation Tests
3-7	Water Level Measurements Taken on 9 May 1996 During Step Two of the Percolation Tests
3-8	Second Quarter Sample Summary

Table 2-1 Summary of Soil Sampling Activities L.E. Carpenter, Wharton, New Jersey **Hot Spot B**

SOIL BORING DESIGNATION	SAMPLE DESIGNATION	SAMPLE DATE	SAMPLE DEPTH	SAMPLE PARAMETERS
SB-1	SB-1-A	5/15/96	0-0.5	Рь
\$B-1	SB-1-B	5/15/96	3.0-3.5	Рь
SB-1	SB-1-C	5/15/96	4.5-5.0	Pb
SB-2	SB-2-A	5/15/96	0-0.5	Pb
SB-2	SB-2-B	5/15/96	2.0-2.5	Pb
SB-2	SB-2-C	5/15/96	4.0-4.5	Pb
SB-3	SB-3-A	5/15/96	0-0.5	Pb
SB-3	SB-3-B	5/15/96	3.0-3.5	РЬ
SB-3	SB-3-C	5/15/96	4.0-4.5	Рь
SB-4	SB-4-A	5/15/96	0-0.5	Рь
SB-4	SB-4-B	5/15/96	2.0-2.5	Pb
SB-4	SB-4-C	5/15/96	4.0-4.5	Рь
SB-5	SB-5-A	5/16/96	0.1-0.7	Pb
SB-5	SB-5-B (duplicate)	5/16/96	0.1-0.7	РЬ
SB-5	SB-5-C	5/16/96	2.0-2.4	Pb
SB-5	SB-5-D	5/16/96	5.0-5.5	Pb
SB-6	SB-6-A	5/16/96	0.5-1	Pb
SB-6	SB-6-B	5/16/96	2.0-2.5	Pb
SB-6	SB-6-C	5/16/96	4.0-4.3	Pb
SB-7	SB-7-A	5/16/96	0.5-0.9	Pb
SB-7	SB-7-B	5/16/96	3.0-3.2	Pb
SB-7	SB-7-C	5/16/96	3.2-3.5	Pb
SB-8	SB-8-A	5/15/96	0-0.5	Pb
SB-8	SB-8-B	5/15/96	2.0-2.5	Pb
SB-8	SB-8-C (duplicate)	5/15/96	2.0-2.5	Рь
SB-9	SB-9-A	5/15/96	0-0.5	Pb
SB-9	SB-9-B	5/15/96	3.0-3.5	Pb
SB-9	SB-9-C	5/15/96	4.0-4.5	Pb
SB-10	SB-10-A	5/15/96	0-0.5	Pb
SB-10	SB-10-B	5/15/96	3.0-3.5	Рь
SB-10	SB-10-C	5/15/96	4.5-5.0	Pb
• SB-15	SB-15-A	5/16/96	0.6-1.0	Pb
SB-15	SB-15-B	5/16/96	2.5-3.0	Pb
SB-15	SB-15-C	5/16/96	4.0-4.5	Pb
SB-16	SB-16-A	5/16/96	0.6-1.0	Pb
SB-16			2.5-3.0	Pb
SB-16			4.0-4.5	РЬ
NA NA	FB-05S ⁽¹⁾	≎/1 5/9 6	NA	Рь
NA NA	FB-06S ⁽¹⁾	5/16/96	NA	Pb

Sample depth is presented in feet below grade.

NA - Not Applicable
Sample SB-5-B is a duplicate sample of SB-5-A.
Sample SB-8-C is a duplicate sample of SB-8-B.

(1) FB - Field Blank

Table 2-2 Analytical Results Summary for Soils Lead (ng/kg) L.E. Carpenter, Wharton, New Jersey

L.E. Carpenter, Wharton, New Jersey Hot Spot B

Sample ID	Sample Date	Lab sample ID	Sample Depth	Soil Type	Result	Qualifier
SB-1-A	05/15/96	9605G266-001	0-0.5	SM (Fill)	2(12(0)(1))\$	
SB-1-B	05/15/96	9605G266-002	3-3.5	SM (Fill)	2:80% (ES)	
SB-1-C	05/15/96	9605G266-003	4.5-5	SM (Fill)	108023200	
SB-2-A	05/15/96	9605G266-004	0-0.5	SM (Fill)	76000000000	
SB-2-B	05/15/96	9605G266-005	2-2.5	SM (Fill)	5(C) (C) (C) (C) (C)	
SB-2-C	05/15/96	9605G266-006	4-4.5	ML (Fill)		
SB-3-A	05/15/96	9605G266-007	0-0.5	SM (Fill)	1777 (Signatura	
SB-3-B	05/15/96	9605G266-008	3-3.5	SM (Fill)	53510355555	
SB-3-C	05/15/96	9605G266-009	4-4.5	SM (Fill)	22:0 .2055	
SB-4-A	05/15/96	9605G266-010	0-0.5	SP (Fill)	1)(51/2015)(51/51	
SB-4-B	05/15/96	9605G266-011	2-2.5	SP (Fill)	0.050	
SB-4-C	05/15/96	9605G266-012	4-4.5	ML	47.7	
SB-5-A	05/16/96	9605G288-016	0.1-0.7	SM (Fill)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
SB-5-B (duplicate)	05/16/96	9605G288-012	0.1-0.7	SM (Fill)	7 (ES (0) (5 (5) (5) (5)	
SB-5-C	05/16/96	9605G288-015	2-2.4	SW (Fill)	474	
SB-5-D	05/16/96	9605G288-014	5-5.5	sw	306	
SB-6-A	05/16/96	9605G289-005	0.5-1	SP (Fill)	925 Ostanting	
SB-6-B	05/16/96	9605G288-020	2-2.5	SP (Fill)	31.7	
SB-6-C	05/16/96	9605G288-018	4-4.3	SP (Fill)	245	
SB-7-A	05/16/96	9605G289-003	0.5-0.9	SW (Fill)	623時期與關鍵	
SB-7-B	05/16/96	9605G289-002	3-3.2	SP (Fill)	116	
SB-7-C	05/16/96	9605G289-004	3.2-3.5	SP (Fill)	12.8	
SB-8-A	05/15/96	9605G266-014	0-0.5	sw	282	
SB-8-B	05/15/96	9605G266+015	2-2,5	ML	8.1	
SB-8-C (duplicate)	05/15/96	9605G266-016	2-2.5	ML	19.1	
SB-9-A	05/15/96	9605G266-017	0-0.5	SM (Fill)	\$45008F88	
SB-9-B	05/15/96	9605G266-018	3.0-3.5	SM (Fill)	110	
SB-9-C	05/15/96	9605G266+019	4.0-4.5	SM	12.4	
SB-10-A	05/15/96	9605G266-020	0-0.5	SM (Fill)	1(5)(0)(3)(2)(2)	
SB-10-B	05/15/96	9605G266-021	3-3.5	SM (Fill)	1/2/4/0/5/5/5/5/5	
SB-10-C	05/15/96	9605G266-022	4.5-5	SM (Fill)	31 (1)	
SB-15-A	05/16/96	9605G288-002	0.6-1	SP (Fill)	2550MM	
SB-15-B	05/16/96	9605G289-001	2.5-3	SM (Fill)		
SB-15-C	05/16/96	9605G288-017	4-4.5	SM		
SB-16-A	05/16/96	9605G288-019	0.6-1.0	SW (Fill)	380	
SB-16-B	05/16/96	9605G288-013	3-3.5	GM/ML	65.1	
SB-16-C	05/16/96	9605G288-003	5-5.3	GP/ML	63.6	
FB-05S*	05/15/96	9605G266-013	NA	NA	19.5	U
FB-06S*	05/16/96	9605G288-001	NA	NA	19.5 (1)	U
Notes			1	<u> </u>	1.2.2 (.,	

Notes:

Sample depth is presented in feet below grade.

NA -Not applicable.

- U Analyte was not detected at or above the reporting limit.
- * Field blank sample reported in microgram per liter (ug/l).

mg/kg - milligram per kilogram

- indicates an exceedance of the remedial goal of 600 mg/kg as specified in the ROD.

(1) Sample result is an average concentration of the original sample and the replicate sample run by the lab.

HSBLEAD.XLS

Table 2-3 Summary of Soil Sampling Activities L.E. Carpenter, Wharton, New Jersey Hot Spot C

A STATE OF THE PARTY OF THE PAR

Hot Spot C								
SOIL BORING DESIGNATION	SAMPLE DESIGNATION	SAMPLE DATE	SAMPLE DEPTH	SAMPLE PARAMETERS				
C-1	C-1-A	5/17/96	0-0.5	Pb				
C-1	C-1-B	5/17/96	2.7-3.2	Pb				
C-1	C-1-C	5/17/96	4.0-4.5	Pb				
C-2	C-2-A	5/17/96	0-0.5	Pb				
C-2	C-2-B	5/17/96	2.0-2.5	Pb				
C-2	C-2-C	5/17/96	4.0-4.5	Pb				
C-3	C-3-A	5/17/96	0-0.5	Pb				
C-3	C-3-B	5/17/96	2.8-3.3	Pb				
C-3	C-3-C	5/17/96	4.2-4.6	Pb				
C-5	C-5-A	5/17/96	0-0,5	Pb				
C-5	C-5-B	5/17/96	2.2-2.5	Pb				
C-5	C-5-C	5/17/96	7.0-7.5	Pb				
C-6	C-6-A	5/17/96	0-0.5	Pb				
C-6	C-6-B	5/17/96	2.0-2.5	Pb				
C-6	C-6-C	5/17/96	4.0-4.5	Pb				
C-7	C-7-A	5/20/96	0-0.5	Pb				
C-7	C-7-B	5/20/96	2.0-3.0	Pb				
C-7	C-7-C (duplicate)	5/20/96	2.0-3.0	Pb				
C-7	C-7-D	5/20/96	4.0-4.5	Pb				
C-8	C-8-A	5/20/96	0-0.5	Pb				
C-8	C-8-B	5/20/96	2.0-2.5	Pb				
C-8	C-8-C	5/20/96	4.0-4.5	Pb				
C-9	C-9-A	5/20/96	0.2-0.6	Pb				
C-9	C-9-B	5/20/96	2.0-2.5	РЬ				
C-9	C-9-C	5/20/96	4.0-4.5	Pb				
C-10	C-10-A	5/20/96	0-1.0	Pb				
C-10	C-10-B (duplicate)	5/20/96	0-1.0	Pb				
C-10	C-10-C	5/20/96	3.0-3.5	Рь				
C-10	C-10-D	5/20/96	4.0-4.5	Pb				
C-11	C-11-A	5/16/96	0-0.5	Pb				
C-11	C-11-B	5/16/96	2.0-2.4	Pb				
C-11	C-11-C	5/16/96	4.0-4.5	Pb				
C-12	C-12-A	5/16/96	0.1-0.6	Pb				
C-12	C-12-B	5/16/96	2.0-2.5	Pb				
C-12	C-12-C	5/16/96	4.0-4.5	. Pb				
C-13	C-13-A	5/16/96	0-0.5	Pb				
C-13	C-13-B	5/16/96	4.0-4.5	Pb				
NA	FB-06S ⁽¹⁾	5/16/96	NA .	Pb				
NA NA	FB-07S ⁽¹⁾	5/17/96	ŅĄ	Pb				
NA	FB-09S ⁽¹⁾	5/20/96	NA	Pb				

Notes:

Sample depth is presented in feet below grade.

NA - Not Applicable

Sample C-7-C is a duplicate sample of C-7-B. Sample C-10-B is a duplicate sample of C-10-A.

(1) FB - Field Blank

Table 2-4 Analytical Results Summary For Soils Lead (mg/kg)

L.E. Carpenter, Wharton, New Jersey Hot Spot C

Sample ID	Sample Date	Lab sample ID	Sample Depth	USCS Soil Type	Result	Qualifier
C-1-A	05/17/96	9605G320-008	0-0.5	SP (Fill)	354	
C-1-B	05/17/96	9605G320-007	2.7-3.2	SP (Fill)	32.9	
C-1-C	05/17/96	9605G320-010	4-4.5	SP (Fill)	8.6	· · · · · · · · · · · · · · · · · · ·
C-2-A	05/17/96	9605G320-006	0-0.5	SW (Fill)	215	
C-2-B	05/17/96	9605G320-011	2-2.5	SW (Fill)	5/15/5	
C-2-C	05/17/96	9605G320-014	4-4.5	SW (Fill)	182	
C-3-A	05/17/96	9605G320-001	0-0.5	SW (Fill)	7.0241(61)54	
C-3-B	05/17/96	9605G320-009	2.8-3.3	SW (Fill)		
C-3-C	05/17/96	9605G320-013	4.2-4.6	Fill, CL	346	
C-5-A	05/17/96	9605G320-005	0-0.5	SW (Fill)	77.2	
C-5-B	05/17/96	9605G320-012	2.2-2.5	SP (Fill), CL/GP	44.1	
C-5-C	05/17/96	9605G320-015	7-7.5	ML	9.4	
C-6-A	05/17/96	9605G320-004	0-0.5	SP (Fill)	242	
C-6-B	05/17/96	9605G320-003	2-2.5	SM	513	
C-6-C	05/17/96	9605G320-002	4-4.5	ML/OL	218	
C-7-A	05/20/96	9605G339-007	0-0.5	SP (Fill)	26(0)	
C-7-B	05/20/96	9605G339-014	2-3	SM (Fill)	(1500) (ii)) (-
C-7-C (duplicate)	05/20/96	9605G339-013	2-3	SM (Fill)	614	
C-7-D	05/20/96	9605G339-002	4-4.5	SP (Fill)	1550.94	
C-8-A	05/20/96	9605G339-003	0-0.5	SM (Fill)	2630	
C-8-B	05/20/96	9605G339-005	2-2.5	SW (Fill)	1/150 1/14	
C-8-C	05/20/96	9605G339-004	4-4.5	SW (Fill)	500	
C-9-A	05/20/96	9605G339-010	0.2-0.6	SM (Fill)	2220	
C-9-B	05/20/96	9605G339-012	2-2.5	SM (Fill)	2080部制	
C-9-C	05/20/96	9605G339-011	4.5-5	SW (Fill)	233	
C-10-A	05/20/96	9605G339-006	0-1	SM (Fill)		
C-10-B (duplicate)		9605G339-008	0-1	SM (Fill)		
C-10-C	05/20/96	9605G339-001	3-3.5	SW (Fill)	Street	
C-10-D	05/20/96	9605G339-009	4-4.5	SW (Fill)		
C-11-A	05/16/96	9605G288-011	0-0.5	SW (Fill)	472	
C-11-B	05/16/96	9605G288-007	2-2.4	SW (Fill)	94.0	
C-11-C	05/16/96	9605G288-009	4-4.5	GP (Fill), CL	13.5	
C-12-A	05/16/96	9605G288-008	0.1-0.6	SW (Fill)	437	
C-12-B	05/16/96	9605G288-006	2-2.5	SW (Fill)	(24:0)	
C-12-C	05/16/96	9605G288-010	4-4.5	GP (Fill)	261	
C-13-A	05/16/96	9605G288-005	0-0.5	SW (Fill)	307	
C-13-B	05/16/96	9605G288-004	4-4.5	SW	30.9	
FB-06S*	05/16/96	9605G288-001	NA	NA	19.5	C
FB-07S*	05/17/96	9605G320-023		NA	19.5	J
FB-09S*	05/20/96	9605G339-015	NA	NA .	50.0	J

Notes:

NA -Not applicable.

Sample depth is presented in feet below grade.

- U Analyte was not detected at or above the reporting limit.
- * Field blank sample reported in micrograms per liter (ug/l).

mg/kg - milligram per kilogram.

- indicates an exceedance of the remedial goal of 600 mg/kg as specified in the ROD.

(1) Sample result is an average concentration of the original sample and the replicate sample run by the lab.

Table 2-5 Summary of Soil Sampling Activities L.E. Carpenter, Wharton, New Jersey Hot Spot 1

SOIL BORING DESIGNATION	SAMPLE DESIGNATION	SAMPLE DATE	SAMPLE DEPTH	SAMPLE PARAMETERS
B1	B1-1	5/13/96	8.1-8.6	DEHP
B1	B1-2	5/13/96	10.3-10.8	DEHP
B2A	B2A-1	5/14/96	8.8-9.3	DEHP
B2A	B2A-2	5/14/96	12.0-12.5	DEHP
B3	B3-1	5/14/96	7.0-7.7	DEHP
В3	B3-2	5/14/96	11.2-11.6	DEHP
B4	B4-1	5/14/96	6.0-6.8	DEHP
B4	B4-2 (duplicate)	5/14/96	6.0-6.8	DEHP
B5	B5-1	5/14/96	8.0-8.5	DEHP
<u>B6</u>	B6-1	5/14/96	6.3-6.8	DEHP
B6	B6-2	5/14/96	8.0-8.5	DEHP
NA	FB-03S ⁽¹⁾	5/13/96	NA	DEHP
NA	FB-04S ⁽¹⁾	5/14/96	NA	DEHP

Notes

DEHP - denotes Bis (2-ethylhexyl) phthalate as analyzed by USEPA Method 8270. Sample depth presented is in feet below grade.

NA - Not Applicable.

Sample B4-2 is a duplicate of B4-1.

(1) FB - Field Blank.

SOILSUM.XLS (HS1-DEHP)

Table 2-6 Analytical Results Summary For Soils DEHP (mg/kg) L.E. Carpenter, Wharton, New Jersey Hot Spot 1

Sample ID	Sample Date	Lab sample ID	Sample Depth	USCS Soil Type	Result	Qualifier
B1-1	05/13/96	9605L215-002	8.1 - 8.6	SW	14	E
B1-1	05/13/96	9605L215-002	8.1 - 8.6	SW	27	D
B1-2	05/13/96	9605L215-003	10.3 - 10.8	SW	64	E
B1-2	05/13/96	9605L215-003	10.3 - 10.8	SW	150	D
B2A-1	05/14/96	9605L233-001	8.8 - 9.3	ML/SW	27	E
B2A-1	05/14/96	9605L233-001	8.8 - 9.3	ML/SW	39	D
B2A-2	05/14/96	9605L233-002	12.0 - 12.5	SW	36	E
B2A-2	05/14/96	9605L233-002	12.0 - 12.5	SW	220	D
B3-1	05/14/96	9605L233-003	7.0 - 7.7	GP	25	E
B3-1	05/14/96	9605L233-003	7.0 - 7.7	GP	49	D
B3-2	05/14/96	9605L233-004	11.2 - 11.6	SP	100	E
B3-2	05/14/96	9605L233-004	11.2 - 11.6	SP	790	D
B4-1	05/14/96	9605L233-005	6.0 - 6.8	SW	24	E
B4-1	05/14/96	9605L233-005	6.0 - 6.8	SW	47	D
B4-2 (duplicate)	05/14/96	9605L233-006	6.0 - 6.8	SW	36	E
B4-2 (duplicate)	05/14/96	9605L233-006	6.0 - 6.8	SW	130	D
B5-1	05/14/96	9605L233-007	8.0 - 8.5	SP/GP	23	E
B5-1	05/14/96	9605L233-007	8.0 - 8.5	SP/GP	40	D
B6-1	05/14/96	9605L233-008	6.3 - 6.8	SW	6.8	E
B6-1	05/14/96	9605L233-008	6.3 - 6.8	SW	5.7	D
B6-2	05/14/96	9605L233-009	8.0 - 8.5	SW	2.6	
FB03S*	05/13/96	9605L215-004	NA	NA	8	J
FB-04S*	05/14/96	9605L233-010	NA	NA	18	В

Notes:

DEHP = bis(2-ethylhexyl)phthalate

- E Concentration exceeded the instrument calibration range and was subsequently diluted.
- D Compound analyzed at a dilution.
- B Compound was found in the blank and the sample.
- * Field blank sample reported in microgram per liter (ug/l).

mg/kg - milligram per kilogram.

- indicates an exceedance of the remedial goal of 100 mg/kg as specified in the ROD.

NA - Not Applicable

Sample depth presented is in feet below grade.

B4-2 is a duplicate sample of B4-1.

Table 2-7
Summary of Soil Sampling Activities
L.E. Carpenter, Wharton, New Jersey
Hot Spot 4

SOIL BORING DESIGNATION	SAMPLE DESIGNATION	SAMPLE DATE	SAMPLE DEPTH	SAMPLE PARAMETERS
4-DEL-1	4-DEL-1	5/17/96	0-0.5	DEHP
4-DEL-2	4-DEL-2	5/17/96	0-0.3	DEHP
4-DEL-3	4-DEL-3	5/17/96	0.2-0.5	DEHP
4-DEL-4	4-DEL-4	5/17/96	0.1-0.4	DEHP
4-DEL-4	4-DEL-14 (duplicate)	5/17/96	0.1-0.4	DEHP
4-DEL-5	4-DEL-5	5/17/96	0-0.5	DEHP
4-DEL-6	4-DEL-6	5/17/96	0-0.2	DEHP
4-DEL-7	4-DEL-7	5/17/96	0-0.5	DEHP
4-DEL-8	4-DEL-8	5/17/96	0.1-0.4	DEHP
4-DEL-9	4-DEL-9	5/17/96	0.1-0.4	DEHP
HS4-PES-10	HS4-PES-10-B	5/17/96	7.0-7,8	DEHP
HS4-PES-10	HS4-PES-10-C	5/17/96	9.5-10	DEHP
NA	FB-07S ⁽¹⁾	5/17/96	NA	DEHP

Notes:

DEHP - denotes Bis (2-ethylhexyl) phthalate analyzed by USEPA Method 8270.

Sample depth presented is in feet below grade.

NA - Not Applicable.

Sample 4-DEL-14 is a duplicate of 4-DEL-4.

(1) FB - Field Blank.

Table 2-8 Analytical Results Summary For Soils DEHP (mg/kg)

L.E. Carpenter, Wharton, New Jersey Hot Spot 4

Sample ID	Sample Date	Lab sample ID	Sample Depth	USCS Soil Type	Result	Qualifier
4-DEL-1	05/17/96	9605G319-002	0-0.5	FILL	14	Е
4-DEL-1	05/17/96	9605G319-002	0-0.5	FILL	17	D
4-DEL-2	05/17/96	9605G319-001	0-0.3	FILL	60	Ę
4-DEL-2	05/17/96	9605G319-001	0-0.3	FILL	200	D
4-DEL-3	05/17/96	9605G319-005	0.2-0.5	FILL	15	E
4-DEL-3	05/17/96	9605G319-005	0.2-0.5	FILL	23	D
4-DEL-4	05/17/96	9605G319-003	0.1-0.4	FILL	31	Ε
4-DEL-4	05/17/96	9605G319-003	0.1-0.4	FILL	33	D
4-DEL-14	05/17/96	9605G319-004	0.1-0.4	FILL	31	E
4-DEL-14	05/17/96	9605G319-004	0.1-0.4	FILL	43	D
4-DEL-5	05/17/96	9605G320-022	0-0.5	FILL	12	Ė
4-DEL-5	05/17/96	9605G320-022	0-0.5	FILL	18	D
4-DEL-6	05/17/96	9605G320-021	0-0.2	FILL	6.1	E
4-DEL-6	05/17/96	9605G320-021	0-0.2	FILL.	8.1	D
4-DEL-7	05/17/96	9605G320-016	0-0.5	FILL	34	E
4-DEL-7	05/17/96	9605G320-016	0-0.5	FILL	92	D
4-DEL-8	05/17/96	9605G320-017	0.1-0.4	FILL.	18	E
4-DEL-8	05/17/96	9605G320-017	0.1-0.4	FILL	47	D
4-DEL-9	05/17/96	9605G320-020	0.1-0.4	FILL	15	É
4-DEL-9	05/17/96	9605G320-020	0.1-0.4	FILL	29	D
HS4-PES-10B	05/17/96	9605G320-019	7-7.8	SW	730	E
HS4-PES-10B	05/17/96	9605G320-019	7-7.8	sw	14000	D
HS4-PES-10C	05/17/96	9605G320-018	9.5-10	sw	370	E
HS4-PES-10C	05/17/96	9605G320-018	9.5-10	sw	5600	D
FB-07S*	05/17/96	9605G320-023	NA	NA	5	JB

Notes:

DEHP = bis(2-ethylhexyl)phthalate

- E Concentration exceeded the instrument calibration range and was subsequently diluted.
- D Compound analyzed at a dilution.
- * Field blank sample reported in micrograms per liter (ug/l).

mg/kg - milligrams per kilogram

- indicates an exceedance of the remedial goal of 100 mg/kg as specified in the ROD.

NA - Not Applicable

Sample depth presented is in feet below grade.

4-DEL-14 is a duplicate sample of 4-DEL-4.

Table 2-9 Summary of Soil Sampling Activities L.E. Carpenter, Wharton, New Jersey MW-19 Delineation

SOIL BORING DESIGNATION	SAMPLE DESIGNATION	SAMPLE DATE	SAMPLE DEPTH	SAMPLE PARAMETERS
B-1	B-1A	5/10/96	0.6-1.2	VOC + 10
B-1	B-1C (duplicate)	5/10/96	0.6-1.2	VOC + 10
B-2	B-2A	5/10/96	4.7-5.3	VOC + 10
B-2	B-2B	5/10/96	9.8-10.3	VOC + 10
B-3	B-3A	5/10/96	1.0-1.4	VOC + 10
B-3	B-3B	5/10/96	8.3-8.7	VOC + 10
B-4	B-4A	5/13/96	1.5-2.0	VOC + 10
B-4	B-4B	5/13/96	8.5-9.0	VOC + 10
B- 5	B-5A	5/13/96	4.1-4.4	VOC + 10
B-5	B-5B	5/13/96	6.1-6.6	VOC + 10
B-6	B-6A	5/9/96	1.1-1.5	VOC + 10
B-6	B-6B	5/9/96	6.0-6.4	VOC + 10
B-7	B-7A	5/9/96	1.5-2.0	VOC + 10
B-7	B-7B	5/9/96	5.9-6.3	VOC + 10
B-8	B-8A	5/9/96	1.0-1.5	VOC + 10
B-8	B-8B	5/9/96	2.3-2.7	VOC + 10
B-9	B-9A	5/13/96	1.2-1.7	VOC + 10
NA	FB-01S ⁽¹⁾	5/9/96	NA	VOC + 10
NA	FB-02S ⁽¹⁾	5/10/96	NA	VOC + 10
NA	FB-03S ⁽¹⁾	5/13/96	NA	VOC + 10

Notes:

VOC + 10 denotes volatile organic compounds plus 10 tentatively identified compounds as analyzed by USEPA Method 8260.

Sample depth presented is in feet below grade.

NA - Not Applicable

Sample B-1C is a duplicate sample of B-1A.

(1) FB - Field Blank

Table 2-10
Analytical Results Summary For Soils

°Volatile Organic Compounds (mg/kg)
L.E. Carpenter, Wharton, New Jersey

MW-19 Delineation

Sample ID	B-1A	B-1C	B-2A	B-2B	B-3A	B-3B	B-4A	REMEDIAL GOAL
Lab Sample ID	9605L188-001	9605L188-005	9605L188-007	9605L188-006	9605L188-008	9605L188-009	9605L215-009	AS SPECIFIED
Sample Date	05/10/96	05/10/96	05/10/96	05/10/96	05/10/96	05/10/96	05/13/96	IN EITHER THE
Sample Depth (feet bgs)	0.6 - 1.2	0.6 - 1.2	4.7 - 5.3	9.8 - 10.3	1.0 - 1.4	8.3 - 8.7	1.5 - 2.0	ROD OR NJDEP
Units	MG/KG	CLEANUP CRITERIA						
PARAMETERS:								
Chloromethane	0.012 U	0.013 U	0.011 U	0.01 U	0.011 U	0.012 U	0.012 U	10
Vinyl chloride	0.012 U	0.013 U	0.011 U	0.01 U	0.011 U	0.012 U	0.012 U	10
Bromomethane	0.012 U	0.013 U	0.011 U	0.01 U	0.011 U	0.012 U	0.012 U	1
Chloroethane	0.012 U	0.013 U	0.011 U	0.01 U	0.011 U	0.012 U	0.012 U	NLE
1,1-Dichloroethene	0.006 U	0.006 U	0,005 U	0.005 U	0.006 U	0.006 U	0.006 U	10
Acetone	0.015	0.023	0.011 U	0.01 J	0.012	0.012 U	0.012 U	100
Carbon Disulfide	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	NLE
Methylene Chloride	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
1.2-Dichloroethene (total)	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	NLE
1.1-Dichloroethane	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	10
Vinyl acetate	0.012 U	0.013 U	0.011 U	0.01 U	0.011 U	0.012 U	0.012 U	NLE
2-Butanone	0.012 U	0.013 U	0.011 U	0.01 U	0.011 U	0.012 U	0.012 U	50
Chloroform	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
1.1.1-Trichloroethane	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	50
Carbon Tetrachloride	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
Benzene	0.006 U	0.006 U	0.002 J	0.005 U	0.006 U	0.006 U	0.006 U	1
1.2-Dichloroethane	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
Trichloroethene	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
1.2-Dichloropropane	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	10
Bromodichloromethane	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
cis-1,3-Dichloropropene (a)	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
4-Methyl-2-pentanone	0.012 U	0.013 U	0.011 U	0.01 U	0.011 U	0.012 U	0.012 U	50
Toluene	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.017	500*
trans-1,3-Dichloropropene (a)	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
1,1,2-Trichloroethane	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
Tetrachloroethene	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.002 J	1
2-Hexanone	0.012 U	0.013 U	0.011 U	0.01 U	0.011 U	0.012 U	0.012 U	NLE
Dibromochloromethane	0,006 U	0.006 U	0,005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
Chlorobenzene	0,006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
Ethylbenzene	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	100*
Styrene	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	97
Bromoform	0,006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
1,1,2,2-Tetrachloroethane	0.006 ∪	0.006 U	0,005 U	0.005 U	0.006 U	0.006 U	0.006 U	1
Xylene (total)	0.006 U	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.006 J	10*
Total Target VOCs	0.015	0.023	0.002	0.01	0.012	0	0.025	
Total TICs	0	0.026	0	0	0	ō	0	

Table 2-10
Analytical Results Summary For Soils
Volatile Organic Compounds (mg/kg)
L.E. Carpenter, Wharton, New Jersey
MW-19 Delineation

Sample ID	B-4B	B-5A	B-5B	B-6A	B-6B	B-7A	B-7B	REMEDIAL GOAL
Lab Sample ID	9605L215-006	9605L215-001	9605L215-014	9605L149-009	9605L149-008	9605L149-001	9605L149-002	AS SPECIFIED
Sample Date	05/13/96	05/13/96	05/13/96	05/09/96	05/09/96	05/09/96	05/09/96	IN EITHER THE
Sample Depth (feet bgs)	8.5 - 9.0	4.1 - 4.4	6.1 - 6.6	1.1 - 1.5	6.0 - 6.4	1.5 - 2.0	5.9 - 6.3	ROD OR NJDEP
Units	MG/KG	CLEANUP CRITERIA						
PARAMETERS:								
Chloromethane	0.012 U	0.011 U	10					
Vinyl chloride	0.012 U	0.011 U	10					
Bromomethane	0.012 U	0.011 U	1					
Chloroethane	0.012 U	0.011 U	NLE					
1,1-Dichloroethene	0.006 U	0.005 U	0.005 U	0,006 U	0.006 U	0.005 U	0.006 U	10
Acetone	0.012 U	0.011 U	0.011 U	0,011 U	0.018	0.011 U	0.011	100
Carbon Disulfide	0.006 U	0.005 U	0.005 U	0.002 J	0.006 U	0.005 U	0.006 U	NLE
Methylene Chloride	0.006 U	0.005 U	0.005 U	0.013	0.006	0.005 U	0.011	1
1,2-Dichloroethene (total)	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	NLE
1,1-Dichloroethane	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	10
Vinyl acetate	0.012 U	0.011 U	NLE					
2-Butanone	0.012 U	0.011 U	50					
Chloroform	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	1
1,1,1-Trichloroethane	0.006 ⊍	0.005 U	0.005 U	0.004 J	0.006 U	0.005 U	0.006 U	50
Carbon Tetrachloride	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	1
Benzene	0.006 U	0.005 U	0.005 U	0.003 J	0.006 U	0.005 U	0.006 U	1
1,2-Dichloroethane	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	1
Trichloroethene	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	1
1,2-Dichloropropane	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	10
Bromodichloromethane	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	1
cis-1,3-Dichloropropene	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	1
4-Methyl-2-pentanone	0.012 U	0.011 U	50					
Toluene	0.006 U	0.005 U	0.005 U	0.006 U	0.002 J	0.005 U	0.01	500*
trans-1,3-Dichloropropene	0.006 U	0.005 U	0.005 U	0.006 U	0.006 ป	0.005 U	0.006 U	1
1,1,2-Trichloroethane	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	1
Tetrachloroethene	0.003 J	0.005 U	0.005 U	0.002 J	0.006 U	0.005 U	0.006 U	1
2-Hexanone	0.012 U	0.011 U	0.011 U	0.011 U	0.011 U	0:011 U	0.011 U	NLE
Dibromochloromethane	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	1
Chlorobenzene	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	1
Ethylbenzene	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	100*
Styrene	0.006 ⊍	0.005 U	0,005 U	0.006 U	0.006 U	0.005 U	0.006 U	97
Bromoform	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	1
1,1,2,2-Tetrachloroethane	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	1
Xylene (total)	0.006 U	0.005 U	0.005 U	0.006 U	0.006 U	0.005 U	0.006 U	10*
Total Target VOCs	0.003	0	0	0.024	0.026	0	0.032	
Total TICs	0	0	0	0	0	0	0	

Table 2-10
Analytical Results Summary For Soils
Volatile Organic Compounds (mg/kg)
L.E. Carpenter, Wharton, New Jersey
MW-19 Delineation

Sample ID	B-8A	B-8B	B-9A	FB-01S	FB-02S	FB-03S	REMEDIAL GOAL
Lab Sample ID	9605L149-003	9605L149-004	9605L215-005	9605L149-006	9605L188-003	9605L215-012	AS SPECIFIED
Sample Date	05/09/96	05/09/96	05/13/96	05/09/96	05/10/96	05/13/96	IN EITHER THE
Sample Depth (feet bgs)	1.0 - 1.5	2.3 - 2.7	1.2 - 1.7	NA	NA	NΑ	ROD OR NJDEP
Units	MG/KG	MG/KG	MG/KG	MG/L	MG/L	MG/L	CLEANUP CRITERIA
PARAMETERS:				0			
Chloromethane	0.011 U	0.012 U	0.014 U	0.005 U	0.005 U	0.005 U	10
Vinyl chloride	0.011 U	0.012 U	0.014 U	0.005 U	0.005 U	0.005 U	10
Bromomethane	0.011 U	0.012 U	0.014 U	0.005 U	0.005 U	0.005 U	1
Chloroethane	0.011 U	0.012 U	0.014 U	0.005 U	0.005 U	0.005 U	NLE
1,1-Dichloroethene	0.006 U	0.006 U	0,007 U	0.002 U	0.002 U	0.002 U	10
Acetone	0.015	0.012 U	0,014 U	0.005 U	0.005 U	0.005 U	100
Carbon Disulfide	0.006 U	0.006 U	0,007 U	0,005 U	0.005 U	0.005 U	NLE
Methylene Chloride	0.009	0.011	0.007 U	0.002 U	0.002 U	0.003	1
1,2-Dichloroethene (total)	0.006 U	0.006 U	0.007 U	0.005 U	0.005 U	0.005 U	NLE
1,1-Dichloroethane	0.006 U	0.006 U	0.007 U	0.005 U	0.005 U	0.005 U	10
Vinyl acetate	0,011 U	0.012 U	0.014 U	NA	NA	NA	NLE
2-Butanone	0.01'1⁻'U	0.012 U	0.014 U	0.005 U	0.005 U	0.005 U	50
Chloroform	0.006 U	0.006 U	0.007 U	0.005 U	0.005 U	0.005 U	1.
1,1,1-Trichloroethane	0.006 ⊍	0.003 J	0.007 U	0.005 U	0.005 U	0.005 U	50
Carbon Tetrachloride	0.006 U	0.006 U	0.007 U	0.002 U	0.002 U	0.002 U	. 1
Benzene	0,006 U	0.006 U	0.007 U	0.001 U	0.001 U	0.001 Ü	1
1,2-Dichloroethane	0.006 ป	0.006 U	0.007 U	0.002 U	0.002 U	0.002 U	1
Trichloroethene	0.006 U	0.006 U	0.007 U	0.001 U	0.001 U	0.001 U	1
1,2-Dichloropropane	0.006 U	0.006 U	0.007 Ú	0.001 U	0.001 U	0.001 U	10
Bromodichloromethane	0.006 U	0.006 U	0.007 U	0.001 U	0.001 U	0.001 U	1
cis-1,3-Dichloropropene	0.006 U	0.006 U	0.007 U	0.005 U	0.005 U	0.005 U	1
4-Methyl-2-pentanone	0.011 U	0.012 U	0.014 U	0.005 U	0.005 U	0.005 U	50
Toluene	0.01	0.004 J	0.007 U	0.005 U	0.005 U	0.001 J	500*
trans-1,3-Dichloropropene	0.006 U	0.006 U	0.007 U	0.005 U	0.005 U	0.005 U	1
1,1,2-Trichloroethane	0.006 U	0.006 U	0.007 U	0.003 U	0.003 U	0.003 U	1
Tetrachloroethene	0.007	0.005 J	0.007 U	0.001 U	0.001 U	0.001 U	1
2-Hexanone	0.011 U	0.012 U	0,014 U	0.005 U	0.005 U	0.005 U	NLE
Dibromochloromethane	0.006 U	0.006 U	0,007 U	0.005 U	0.005 U	0.005 U	1
Chlorobenzene	0,006 U	0.006 U	0.007 U	0,004 U	0.004 U	0,004 U	1
Ethylbenzene	0.006 U	0.006 U	0.007 U	0.005 U	0.005 U	0,005 U	100*
Styrene	0.006 U	0.006 U	0.007 U	0.005 U	0.005 U	0.005 U	97
Bromoform	0.006 U	0.006 U	0.007 U	0.004 U	0.004 U	0.004 U	1
1,1,2,2-Tetrachloroethane	0.006 U	0.006 U	0.007 U	0.002 U	0.002 U	0.002 U	1
Xylene (total)	0.006 U	0.006 U	0.007 U	0.005 U	0.005 U	0.005 U	10*
Total Target VOCs	0.041	0.023	0	0	0	0.004	
Total TICs	0	0	0	0	0	0	

Notes

- U Not detected at or above reported detection limit or quantitation limit.
- J Estimated value.
- NLE No Level Established.
- (a) Values reflect the combined standards for the cis and trans isomers of 1,3-Dichloropropene.
- * Remedial goal as specified in the ROD.

Table 3-1
Summary of Lead in Groundwater Analytical Results
L.E. Carpenter and Co., Wharton, New Jersey

Sample Location	Monitoring Event	Date	Lead Concentration (ug/L)		
Production Well	1st Round RI	September 1989	5 U		
Production Well	2nd Round RI	January 1990	2 U		
MW-1	1st Round RI	September 1989	5 U		
MW-1	2nd Round RI	January 1990	2 U		
MW-2	1st Round RI	September 1989	20 U		
MW-2	2nd Round RI	January 1990	2 U		
MW-3	1st Round RI	September 1989	5 U		
MW-3	2nd Round RI	January 1990	2 U		
MW-4	1st Round RI	September 1989	5 U		
MW-4	2nd Round RI	January 1990	2 U		
MW-4	1st Quarter 1995	February 1995	3.3		
MW-5	1st Round RI	September 1989	5 U		
MW-5	2nd Round RI	January 1990	10 U		
MW-6	2nd Round RI	January 1990	10 U		
MW-7	2nd Round RI	January 1990	8.3 S		
MW-8	1st Round RI	September 1989	5 U		
MW-8	2nd Round RI	January 1990	2 U		
MW-9	2nd Round RI	January 1990	2 U		
MW-10	2nd Round RI	January 1990	2 U		
MW-11I	1st Round RI	September 1989	5 U		
MW-11I	2nd Round RI	January 1990	2 U		
MW-11I	1st Quarter 1995	February 1995	8.3		
MW-27 (dup of MW-11I)	1st Quarter 1995	February 1995	9.4		
MW-11D	1st Round RI	September 1989	5 U		
MW-11D	2nd Round RI	January 1990	2 U		
MW-128	1st Round RI	September 1989	10 U		
MW-12S	2nd Round RI	January 1990	2 U		
MW-12I	1st Round RI	September 1989	5 U		
MW-12I	2nd Round RI	January 1990	2 U		
MW-13S	1st Round RI	September 1989	5 U		
MW-13S	2nd Round RI	January 1990	2 U		
MW-13S	3rd Round RI	July 1991	ND		
MW-13I	1st Round RI	September 1989	5 U		
MW-13I	2nd Round RI	January 1990	2 U		
MW-13I	3rd Round RI	July 1991	ND		
MW-14S	1st Round RI	September 1989	5 U		
MW-14S	2nd Round RI	January 1990	2 U		
MW-14S	1st Quarter 1995	February 1995	4.4		
MW-14I	1st Round RI	September 1989	5 U		
MW-14I	2nd Round RI	January 1990	2 U		
MW-14I	1st Quarter 1995	February 1995	5.3		

Notes at end of table.

Table 3-1
Summary of Lead in Groundwater Analytical Results
L.E. Carpenter and Co., Wharton, New Jersey

Sample Location	Monitoring Event	Date	Lead Concentration (ug/L)
MW-14D	1st Round RI	September 1989	7
MW-14D	2nd Round RI	January 1990	2 U
MW-15S	1st Round RI	September 1989	5 U
MW-15S	2nd Round RI	January 1990	2.1 B
MW-15Ĭ	1st Round RI	September 1989	5 U
MW-15I	2nd Round RI	January 1990	2 U
MW-16S	1st Round RI	September 1989	5 U
MW-16S	2nd Round RI	January 1990	2 U
MW-16S	1st Quarter 1995	February 1995	11.2
MW-16İ	1st Round RI	September 1989	5 U
MW-16I	2nd Round RI	January 1990	2 U
MW-16I	1st Quarter 1995	February 1995	1.5 U
MW-17S	1st Round RI	September 1989	5 U
MW-17S	2nd Round RI	January 1990	2 U
MW-17D	1st Round RI	September 1989	5 U
MW-17D	2nd Round RI	January 1990	2 U
MW-18S	1st Round RI	September 1989	5 U
MW-18S	2nd Round RI	January 1990	2 U
MW-18S	1st Quarter 1995	February 1995	11.7
MW-18I	1st Round RI	September 1989	5 U
MW-18I	2nd Round RI	January 1990	2 U
MW-18I	1st Quarter 1995	February 1995	4.6
MW-18D	1st Round RI	September 1989	5 U
MW-18D	2nd Round RI	January 1990	2 U
MW-21	3rd Round RI	July 1991	ND
MW-22 (total)	4th Round RI	February 1992	18.6
MW-22 (dissolved)	4th Round RI	February 1992	3 U
MW-23 (total)	4th Round RI	February 1992	672
MW-23 (dissolved)	4th Round RI	February 1992	3 U
MW-24 (total)	4th Round RI	February 1992	91
MW-24 (dissolved)	4th Round RI	February 1992	3 U
MW-25 (total)	4th Round RI	February 1992	98
MW-25 (dissolved)	4th Round RI	February 1992	3 U
WP-A7 (total)	Lead Delineation	July 1996	1.6
WP-A7 (dissolved)	Lead Delineation	July 1996	2.8
WP-A9 (total)	Lead Delineation	July 1996	2.3
WP-A9 (dissolved)	Lead Delineation	July 1996	2.2

Notes:

Shading indicates the concentration is greater than the criterion (10 ug/L) set in the ROD.

- B Concentration is less than the Contract Required Detection Limit (CRDL).
- ND Not detected, data not available for determination of quantitation limit.
- J Estimated concentration.
- S Concentration was determined by method of standard additions.
- U Undetected at the concentration indicated.
- ug/L Micrograms per liter.

Table 3-2 Summary of Groundwater Screening Sampling Activities L.E. Carpenter, Wharton, New Jersey MW-19 Delineation

SOIL BORING DESIGNATION	SAMPLE DESIGNATION	SAMPLE DATE	SCREENED INTERVAL	SAMPLE PARAMETERS
B-1	BW-1	5/10/96	9.83 - 14.83	VOC + 10
B-1	BW-11 (duplicate)	5/10/96	9.83 - 14.83	VOC + 10
B-2	BW-2	5/10/96	10.00 - 15.00	VOC + 10
B-3	BW-3	5/10/96	8.99 - 13.99	VOC + 10
B-4	BW-4	5/13/96	9.64 - 14.64	VOC + 10
B-5	BW-5	5/13/96	3.85 - 8.85	VOC + 10
B-6	BW-6	5/9/96	5.30 - 10.30	VOC + 10
B-7	BW-7	5/9/96	4.40 - 9.40	VOC + 10
B-8	BW-8	5/9/96	0.97 - 5.97	VOC + 10
B-9	BW-9	5/13/96	2.45 - 14.45	VOC + 10
NA	FB-01W ⁽¹⁾	5/9/96	NA	VOC + 10
NA	TB-01W ⁽²⁾	5/9/96	NA	VOC + 10
ŅA	FB-02W ⁽¹⁾	5/10/96	NA NA	VOC + 10
NA	TB-02W ⁽²⁾	5/10/96	NA NA	VOC + 10
NA	FB-03W ⁽¹⁾	5/13/96	NA NA	VOC + 10
NA	TB5-13 ⁽²⁾	5/13/96	NA	VOC + 10

Notes:

VOC + 10 denotes volatile organic compounds plus 10 tentatively identified compounds analyzed by USEPA Method 624. Sample Interval - Screened interval of dedicated temporary micro-well presented is in feet below grade.

NA - Not Applicable

Sample BW-11 is a duplicate sample of BW-1.

(1) FB - Field Blank

(2) TB - Trip Blank

Table 3-3
Analytical Results Summary For Groundwater
Volatile Organic Compounds (ug/l)
L.E. Carpenter, Wharton, New Jersey
MW-19 Delineation

Lab Sample 1D 9605L188-013 9605L188-011 9605L188-011 9605L18-011 9605L145-011 9605										
Sample Date	Sample ID	BW-1	BW-2	BW-3	BW-4	BW-5	BW-6	BW-7	BW-8	NJDEP
Units										
PARAMETERS:		· ·								
Chloromethane		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	CRITERIA* (ug/L)
Vinyl chloride	* *									
Bromomethane		,								30
Chicroethene										
1,1-Dichioroethene										
Acetone										NLE
Carbon Disuffice	1,1-Dichloroethene								2 U	
Methylene Chloride									12	700
1,2-Dichloroethene (total) 1,1-Dichloroethene (total) 1,1-Dichloroethane 5 U 5000 U 5 U 5000 U 5 U 5000 U 5 U 5 U									5 U	NLE
1,1-Dichloroethane								2 U	2 U	2
2-Butanone									5 U	10
Chloroform	1,1-Dichloroethane				5000 U	5 U	5 U	5 U	5 U	70
1.1.1-Trichloroethane	2-Butanone	5 U		5 U	5000 U	64	5 U	.5 U	5 U	300
Carbon Tetrachloride	Chloroform	5 Ú	5000 U	5 U	5000 U	5 U	5 Ü	5 U	5 U	6
Benzene	1,1,1-Trichloroethane	5 U		5 U	5000 U	5 U	5 0	5 U	5 ∪	30
T/2-Dichloroethane 2 U 2000 U 2 U 2000 U 2 U <td>Carbon_Tetrachloride</td> <td>2 U</td> <td></td> <td>- 2√U</td> <td>- 2000 U</td> <td>2 U</td> <td>2 U</td> <td>2 U</td> <td>2 U</td> <td>2</td>	Carbon_Tetrachloride	2 U		- 2√U	- 2000 U	2 U	2 U	2 U	2 U	2
Trichloroethene	Benzene	1 U		1 U	1000 Ü	1 U	1.1	1 U	1 U	1
1,2-Dichloropropane 1 U 1000 U 1 U 1000 U 1 U <td>1,2-Dichloroethane</td> <td>2 U</td> <td>2000 U</td> <td>2 U</td> <td>2000 U</td> <td>2 U</td> <td>2 U</td> <td>2 U</td> <td>2 U</td> <td>2</td>	1,2-Dichloroethane	2 U	2000 U	2 U	2000 U	2 U	2 U	2 U	2 U	2
Bromodichloromethane	Trichloroethene	1 U	1000 U	1 U	1000 U	1 U	1 U	1 U	1 ∪	1
cis-1,3-Dichloropropene 5 U 5000 U 5 U 5000 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 400 4-Methyl-2-pentanone 5 U 5000 U 5 U 5000 U 190 5 U 5 U 5 U 400 Toluene 5 U 3000 U 3 J 200000* 4 J 5 U 1 J 5 U 1000 trans-1,3-Dichloropropene 5 U 5000 U 5 U 5000 U 5 U 5 U 5 U 5 U 5 U 7 1,1,2-Trichloroethane 3 U 3000 U 3 U 3000 U 3 U	1,2-Dichloropropane	1 U	1000 U	. 1 U	1000 ⊍	1 U	1 U	1 U	1 U	1
4-Methyl-2-pentanone 5 U 5000 U 5 U 5000 U 190 5 U 5 U 5 U 400 Toluene 5 U 5000 U 5 U 5000 U 5 U 5 U 1 U 1 U 1000 trans-1,3-Dichloropropene 5 U 5000 U 5 U 5000 U 5 U 5 U 5 U 7 1,1,2-Trichloroethane 3 U 3000 U 3 U 3000 U 3 U	Bromodichloromethane	1 U	1000 U	1 U	1000 U	1 U	1 U	1 U	1 U	1
Toluene 5 U 50000 3 J 20000 4 J 5 U 1 J 5 U 1000 trans-1,3-Dichloropropene 5 U 5000 U 5 U 5000 U 5 U 5 U 5 U 5 U 7	cis-1,3-Dichloropropene	5 U	5000 U	5 U	5000 U	5 U	5 U	5 U	5 U	5
trans-1,3-Dichloropropene 5 U 5000 U 5 U 5000 U 5 U 5 U 5 U 5 U 5 U 7 1,1,2-Trichloroethane 3 U 3000 U 3 U 3000 U 3	4-Methyl-2-pentanone	5 U	5000 U	5 U	5000 U	190	5 U	5 U	5 U	400
trans-1,3-Dichloropropene 5 U 5000 U 5 U 5000 U 5 U 5 U 5 U 5 U 5 U 5 U 7 1,1,2-Trichloroethane 3 U 3000 U 3 U 3000 U 3		5 U	\$\$ 20000 FAV	3 J	200000	4 J	5 U	1 J	5 U	1000
1,1,2-Trichloroethane 3 U 3000 U 3 U 3000 U 3 U<	trans-1,3-Dichloropropene	5 U	5000 U	5 U	5000 U	5 U	5 U	5 U	5 U	
Tetrachloroethene 1 U 1000 U 1 U 1000 U 1 U 1 U 1 U 1 U 1	1,1,2-Trichloroethane	3 U	3000 U	3 ∪	3000 U	3 U	3 U	3 U	3 U	3
Dibromochloromethane	Tetrachloroethene	1 U	1000 U	. 1 ⊍	1000 U	1 U	1 U	1 U		
Dibromochloromethane 5 U 5000 U 5 U 5000 U 5 U </td <td>2-Hexanone</td> <td>5 U</td> <td>5000 U</td> <td>5 U</td> <td>5000 U</td> <td>5 U</td> <td>5 U</td> <td>5 U</td> <td>5 U</td> <td>NLE</td>	2-Hexanone	5 U	5000 U	5 U	5000 U	5 U	5 U	5 U	5 U	NLE
Chlorobenzene 4 U 4000 U 4 U 4000 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 5 U 4 U	Dibromochloromethane	5 U	5000 U	5 Ü	5000 U	5 U	5 U	5 U		
Ethylbenzene 5 U 7600 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 700 Styrene 5 U 5000 U 5 U 5000 U 5 U 5 U 5 U 5 U 5 U 5 U 100 Bromoform 4 U 4000 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 2 U	Chlorobenzene	4 U	4000 U	4 U	4000 U	4 U	4 U			
Styrene 5 U 5000 U 5 U 5000 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 4 U <	Ethylbenzene	5 U	VERT 7600 (100)	5 U	####7/600	5 U	5 U			
Bromoform 4 U 4000 U 4 U 4000 U 4 U	Styrene	5 U	5000 U	5 U	5000 U	5 Ú	5 U	5 Ú		
1,1,2,2-Tetrachloroethane 2 U 2000 U 2 U 2000 U 2 U	Bromoform	4 U	4000 U	4 U	4000 U	4 U	4 U			
Xylene (total) 5 U \$24000 5 U \$3000 1 J 5 U 5 U 5 U 40 Total Target VOCs 0 248600 3 245600 259 0 31 12	1,1,2,2-Tetrachloroethane	2 U	2000 U			2 U				<u> </u>
Total Target VOCs 0 248600 3 248600 259 0 31 12	Xylene (total)	5 U	\$254X COO FEE	5 U	\$\$(38000Links)	1 J				
	Total Target VOCs	0				259	0			
	Total TICs	0	0	0		0	0	6	- 12	

Table 3-3 (continued) Analytical Results Summary For Groundwater Volatile Organic Compounds (ug/l) L.E. Carpenter, Wharton, New Jersey MW-19 Delineation

Sample ID	BW-9	BW-11	TB-01	TB-02	TB5-13	FB-01W	FB-02W	FB-03W	NJDEP
Lab Sample ID	9605L215-010	9605L188-012	9605L149-005	9605L188-002	9605L215-013	9605L149-007	9605L188-004	9605L215-007	GROUNDWATER
Sample Date	05/13/96	05/10/96	05/09/96	05/10/96	05/13/96	05/09/96	05/10/96	05/13/96	QUALITY
Units	ug/L	CRITERIA* (ug/L)							
PARAMETERS:								-	
Chloromethane	5 U	5 U	5 Ü	5 U	5 U	5 U	5 U	5 U	30
Vinyl chloride	5 U	5 U	5 U	5 U	5 U	5 Ú	5 U	5 U	. 5
Bromomethane	5 U	5 U	5 Ü	5 U	5 U	5 U	5 U	5 U	10
Chloroethane	5 U	5 U	C	5 U	5 U	5 U	5 U	5 U	NLE
1,1-Dichloroethene	2 U	2 U	5 U	2 U	2 U	2 U	2 U	2 Ü	2
Acetone	9 B	5 U	2 U	5 U	5 U	5	5 U	5 U	700
Carbon Disulfide	5 U	5 U	5 U	5 U	5 Ü	5 U	5 U	5 U	NLE
Methylene Chloride	2 Ü	2 U	2 U	2 J	2 U	2 U	2 Ü	2	2
1,2-Dichloroethene (total)	5 U	5 U	5 U	5 U	5 U	6 U	5 U	5 ∪	10
1,1-Dichloroethane	5 U	5 U	5 U	5 U	5 Ü	5 U	5 U	5 U	70
2-Butanone	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	300
Chloroform	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	6
1,1,1-Trichloroethane	- 5 U	5 U	5 U	5 U	5 U	5 U	5 Ú	5 U	30.
Carbon Tetrachloride	2 U	2 U	.2 U	2 U	2 U	2 U	2 ປ	2 U	2
Benzene	1 U	1 U	1 U	1 U	1 🕖	ט 1	1 U	1 U	1
1,2-Dichloroethane	2 U	2 U	2 U	2 U	2 ט	2 U	2 U	2 U	2
Trichloroethene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1
cis-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 Ü	5 U	5 U	5 U	5
4-Methyl-2-pentanone	5 U	5 U	5 Ú	5 ∪	5 U	5 U	5 U	5 U	400
Toluene	5 U	5 U	5 U	5 Ü	2 J	5 U	5 U	5 U	1000
trans-1,3-Dichloropropene	5 U	5 Ü	5 U	5 U	5 U	5 U	5 U	5 U	7
1,1,2-Trichloroethane	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3
Tetrachloroethene	1 U	1 U	1 U	1 0	1 U	1 U	1 U	1 U	1
2-Hexanone	5 U	5 U	5 Ü	5 U	5 U	5 U	5 U	5 Ü	NLE
Dibromochloromethane	5 U	5 U	5 Ü	5 U	5 U	5 U	5 U	5 U	10
Chlorobenzene	4 U	4 U	4 U	4 ∪	4 U	4 U	4 U	4 U	5
Ethylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	700
Styrene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	100
Bromoform	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4
1,1,2,2-Tetrachloroethane	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 Ú	2
Xylene (total)	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	40
Total Target VOCs	0	0	0	2	2	5	0	2	
Total TICs	0	0	0	0	0	0	0	0	

Notes:

Shading indicates detected concentration exceeds applicable NJDEP Groundwater Quality Criteria.

U - Not detected at or above reported detection limit or quantitation limit.

J - Estimated value.

^{* -} The higher of the Practical Quantitation Level and the Groundwater Quality Criteria was used.

TABLE 3-4 SECOND QUARTER ANALYTICAL RESULTS - BTEX L.E. CARPENTER SITE WHARTON, NEW JERSEY

Sample ID Lab Sample Number Sampling Date Dilution Factor Units	NJDEP Class IIA Groundwater Criteria (ug/l)	MW-4 52733 6/14/96 1.0 ug/l	MW-14I 52738 6/14/96 1.0 ug/l	MW-15S 52736 6/14/96 1.0 ug/l	MW-15I 52732 6/14/96 1.0 ug/I	MW-178 52734 6/14/96 1.0 ug/L	MW-25 52737 6/14/96 1.0 ug/l	MW-30 52735 6/14/96 1.0 ug/l	FB-1 52731 6/14/96 1.0 ug/l	Trip Blank 52739 6/12/96 1.0 ug/l
VOLATILE COMPOUNDS										
Benzene	1 1	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Toluene	500 (1)	0.14 U	0.14 💯 ി	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
Ethylbenzene	350 (1)	7.0	0.14 ปั	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
Xylene(Total)	20 (1)	7,8	0.50 U	0.50 U	0.50 ∪	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Total Confident Conc. VO	As (s)	14.8	Ü	U	Ū	U	U	U	U	U

NOTES:

Samples analyzed by Method 602.

ug/l denotes microgram per liter.

Sample MW-30 is a duplicate of MW-15S.

Sample MW-31 is a duplicate of MW-12R.

U denotes not detected.

(1)Discharge criteria established in ROD.

TABLE 3-4 (continued) SECOND QUARTER ANALYTICAL RESULTS - BTEX L.E. CARPENTER SITE WHARTON, NEW JERSEY

Sample ID Lab Sample Number Sampling Date Dilution Factor Units	NJDEP (Ground Criteria	lwater	MW-12R 54862 7/8/96 100.0 ug/l	MW-22 54860 7/8/96 20.0 ug/L	MW-26 54859 7/8/96 2:0 ug/l	MVV-31 54861 7/8/96 100,0 ug/ĭ	FB070896 54863 7/8/95 1.0 ug/l	Trip Blank 54864 7/8/96 1.0 ug/l
VOLATILE COMPOUNDS				2 2n				- -
Benzene	1		10.00 U	2.0 U	0.20 U	10 U	0.10 U	0.10 U
Toluene	500	(1)	14.00 U	2.8 U	0.28 U	14 U	0.14 U	0.14 U
Ethylbenzene	350	(1)	1040	258	0.86	1130	0.14 U	0.14 U
Xylene(Total)	20	(1)	4150	941	1.10	6410	0.50 U	0.50 U
Total Confident Conc.	VOAs (s)		5190	1199	1.96	5740	V	U

NOTES:

Samples analyzed by Method 602.

ug/l denotes microgram per liter.

Sample MW-30 is a duplicate of MW-15S.

Sample MW-31 is a duplicate of MW-12R.

U denotes not detected.

(1)Discharge criteria established in ROD.

TABLE 3-5 SECOND QUARTER ANALYTICAL RESULTS - DEHP L.E. CARPENTER SITE WHARTON, NEW JERSEY

Sample ID		MW-4	MW-141	MW-15S	MW-151	MW-178	MW-25	MW-30	FB-1
Lab Sample Number	NJDEP Class IIA	52733	52738	52736	52732	52734	52737	52735	52731
Sampling Date	Groundwater	6/14/96	6/14/96	6/14/96	6/14/96	6/14/96	6/14/96	6/14/96	6/14/96
Dilution Factor	Criteria (ug/l)	100.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units		ug/I	ug/l						
SEMIVOLATILE									
COMPOUNDS		`		ł					
bis(2-Ethylhexyl)phthalate	30	9300	1.3 L	J 1.2 L	I 1.2 U	1.3 U	1.2 U	1.2 U	1.4 U
Total Confident Conc. BNA	\	9300	1.3 L	J 1.2 L	1.2 U	1.3 U	1.2 U	1.2 U	1.4 U

NOTES:

Samples analyzed by Method 625. ug/l denotes microgram per liter.

Sample MW-30 is a duplicate of MW-15S.

Sample MW-31 is a duplicate of MW-12R.

U denotes not detected.

TABLE 3-5 (continued) SECOND QUARTER ANALYTICAL RESULTS - DEHP L.E. CARPENTER SITE WHARTON, NEW JERSEY

Total Confident Conc. BNA		460	70	69	490	1.2 U
bis(2-Ethylhexyl)phthalate		460	70	69	490	1.2 U
SEMIVOLATILE COMPOUNDS						
Dilution Factor Units	Criteria (ug/l)	5.0 ug/l	1.0 ug/L	1.0 ug/l	5.0 ug/l	1,0 ug/l
Sample ID Lab Sample Number Sampling Date	NJDEP Class IIA Groundwater	7/8/96	MW-22 54860 7/8/96	MW-26 54859 7/8/96	MVV-31 54861 7/8/96	FB070896 54863 7/8/96

NOTES:

Samples analyzed by Method 625.

ug/l denotes microgram per liter.

Sample MW-30 is a duplicate of MW-15S.

Sample MW-31 is a duplicate of MW-12R.

U denotes not detected.

TABLE 3-6
Water Level Measurements Taken on 9 May 1996
During Step One of the Percolation Tests

·								
WATER LEVELS FOR PERC-6								
TIME	Trial 1	Trial 2	Trial 3					
14:48 14:53 15:27 15:32 15:33 15:38	3.48' 3.67'	3.39' 3.60'	3.71° 3.90°					
	WATER LEVELS	S FOR PERC-9						
TIME	Trial 1	Trial 2	Trial 3					
13:48 13:53 13:58 14:03 14:19 14:24	5.10° 5.33°	5.37' 5.50'	5.00 5.21					
	WATER LEVI	ELS FOR P3						
TIME	Trial 1	Trial 2	Trial 3					
11:56 12:04 12:06 12:07 12:08 12:13 12:15 12:16 12:17 12:18 12:19 12:20 12:22 12:23 12:25 12:27 12:28	0.70° 0.45° 0.45°	0.70° 0.60° 0.55° 0.55° 0.55°	0.70° 0.65° 0.60° 0.60° 0.60° 0.60° 0.60°					

Note: All water levels indicate the depth of the water column below the bottom the fixed measuring point.

TABLE 3-7
Water Level Measurements Taken on 9 May 1996
During Step Two of the Percolation Tests

TIME	WATER LEVELS FOR PERC-6
15:27	3.39'
15:31	3.60'
15:33	3.71'
15:36	3.90'
TIME	WATER LEVELS FOR PERC-9
15:23	5.00'
15:34	5.50'

Notes:

* All water levels indicate the depth of the water column below the fixed measuring point.

TABLE 3-8 Second Quarter Sample Summary L.E. Carpenter Site Wharton, NJ

Well	Date Sampled	Parameters
MW-4	6/14/96	BTEX, DEHP
MW-15I	6/14/96	BTEX, DEHP
MW-15S	6/14/96	BTEX, DEHP
MW-14I	6/14/96	BTEX, DEHP
MW-17S	6/14/96	BTEX, DEHP
MW-25	6/14/96	BTEX, DEHP
MW-30	6/14/96	BTEX, DEHP
FB-1	6/14/96	BTEX, DEHP
TRIP BLANK	6/14/96	BTEX
MW-12R	7/08/96	BTEX, DEHP
MW-22	7/08/96	BTEX, DEHP
MW-26	7/08/96	BTEX, DEHP
MW-31	7/08/96	BTEX, DEHP
FB070896	7/08/96	BTEX, DEHP
TRIP BLANK	7/08/96	BTEX

Notes:

BTEX = benzene, toluene, ethylbenzene, and xylenes (total).

DEHP = bis(2-ethylhexyl)phthalate

MW-30 is a blind duplicate of MW-15S.

MW-31 is a blind duplicate of MW-12R.

FB-1 and FB070896 are field blanks.

APPENDIX C HOT SPOT DELINEATION DATA PACKAGE SUMMARY PAGES

Weston Environmental Metrics, Inc. (Gulf Coast) VOLATILES BY GC/MS, HSL LIST

RFW Batch Number: 960	5L149	VOL Client: L.E.	ATILES BY GC/	MS, HSL LIST Work (eport Date: 05. 20-002-0	/18/96 16:51 Page: 1a
	Cust ID:	B-7A	B-7A	B-7A	B-7B	B-8A	B-8B
Sample Information	RFW#: Matrix: D.F.: Units:	001 SOIL 1 ug/Kg	001 MS SOIL 1 ug/Kg	001 MSD SOIL 1 ug/Kg	002 SOIL 1 ug/Kg	003 SOIL 1 ug/Kg	004 SOIL 1 ug/Kg
Surrogate Recovery 4-Bromof	oroethane-d4 Toluene-d8 luorobenzene	94 % 109 % 90 %	101 % 109 % 91 %	100 % 110 % 83 %	96 % 98 % 90 %	102 % 111 % 96 %	91 % 98 % 82 %
Chloroethane 1.1-Dichloroethene Acetone Carbon Disulfide Methylene Chloride 1.2-Dichloroethene (to 1.1-Dichloroethane Vinyl acetate 2-Butanone Chloroform 1.1.1-Trichloroethane Carbon Tetrachloride Benzene 1.2-Dichloroethane Trichloroethene	otaT)	11 U 11 U 11 U 11 U 5 U 11 U 5 U 5 U 5 U 11 U	83	88	11 U 11	11 U 11 U 11 U 11 U U 11 U U U U U U U	12 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

RFW Batch Number: 9605L149	Client: L.E.	Carpenter	Work 0	rder: 06720-02	0-002-0	Page: 1b
Cust ID:	B-7A	B-7A	B-7A	B - 7B	B-8A	B-8B
RFW#:	001	001 MS	001 MSD	002	003	004
Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylene (total) *= Outside of EPA CLP QC limits.	5 U 5 U 5 U 5 U	102 % 98 % 95 % 104 % 99 %	101 % 92 % 71 % 75 % 99 %	6 U 6 U 6 U 6 U	6 U 6 U 6 U 6 U	6 U 6 U 6 U 6 U

Report Date: 05/18/96 16:51

RFW Batch Number: 9605L149 Client: L.E. Carpenter Work Order: 06720-020-002-0 Page: 2a Cust ID: B-6B **VBLKUB VBLKUB BS** B-6A Sample RFW#: 800 009 96GVF156-MB1 96GVF156-MB1 Information Matrix: SOIL SOIL SOIL **SOIL** D.F.: Units: ug/Kg ug/Kg ug/Kg ug/Kg 1.2-Dichloroethane-d4 95 99 98 92 Surrogate Toluene-d8 105 8 111 98 93 % 4-Bromofluorobenzene Recovery 87 % 80 98 91 _____ =====f]=======f]===== =====f]=======f]======f]======f] **Chloromethane** 10 Vinyl chloride 11 II 11 U 10 U 89 % Bromomethane 11 U 11 U 10 U 78 Chloroethane 11 U 10 97 11 U Ш 1,1-Dichloroethene 6 U 6 U 5 U 107 Acetone 18 11 U 10 U 109 Carbon Disulfide U 5 90 Methylene Chloride 6 13 103 U 1.2-Dichloroethene (total) U U 6 11 101 1.1-Dichloroethane 5 6 U U 6 U 96 Vinyl acetate U 10 97 11 U U 2-Butanone 11 11 11 14 10 44. 118 Chloroform T U 6 5 96 6 П ·U 1.1.1-TrichToroethane U J 98 U Carbon Tetrachloride U 96 Benzene U U 101 1.2-Dichloroethane U U 100 Trichloroethene 5 U 6 U 94 1,2-Dichloropropane U U U 102 Bromodichloromethane U 104 cis-1,3-Dichloropropene 6 U 6 5 U U 120 4-Methy1-2-pentanone U 10 11 Ш 122 Toluene 6 5 U 100 trans-1.3-Dichloropropene U 6 U U 120 1.1.2-Trichloroethane П U 105 Tetrachloroethene -11 5 88 6 J U 2-Hexanone 11 U U 10 П 111 Dibromochloromethane U 6 6 U 5 U 107 Chlorobenzene 6 IJ U H 101 *= Outside of EPA CLP QC limits.

RFW Batch Number:	Cust ID:	Client: L.E. B-6B	Carpenter B-6A	Wor VBLKUB	k Order: 06720-020-002-0 VBLKUB BS	Page: 2b
	RFW#:	800	009	96GVF156-MB1	96GVF156-MB1	<i>(</i>
Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachlor Xylene (total) *= Outside of EPA	-	6 U 6 U 6 U 6 U	6 U 6 U 6 U 6 U	5 U 5 U 5 U 5 U	100 % 104 % 110 % 113 % 98 %	

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: **B-7A**

Project # 06720-020-002-0108 Lab ID: **9605L149-001** Sample Date: 05/09/96 Date Received: 05/10/96

Units: ug/Kg

Tentatively Identified Compounds

To: L.E. Carpenter

Roy F. Weston Incorporated 208 Welsh Pool Road

Lionville, PA 19341-1225

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: **B-7B**

Project # 06720-020-002-0108 Lab ID: **9605L149-002** Sample Date: 05/09/96 Date Received: 05/10/96

Units: ug/Kg

Tentatively Identified Compounds

To: L.E. Carpenter

Roy F. Weston Incorporated 208 Welsh Pool Road

Lionville, PA 19341-1225

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: **B-8A**

Project # 06720-020-002-0108 Lab ID: **9605L149-003**

Sample Date: 05/09/96 Date Received: 05/10/96

Units: ug/Kg

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: **B-8B**

Project # 06720-020-002-0108

Lab ID: **9605L149-004** Sample Date: 05/09/96 Date Received: 05/10/96

Units: ug/Kg

Tentatively Identified Compounds

To: L.E. Carpenter

Roy F. Weston Incorporated 208 Welsh Pool Road Lionville, PA 19341-1225

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: **B-6B**

Project # 06720-020-002-0108 Lab ID: **9605L149-008** Sample Date: 05/09/96 Date Received: 05/10/96

Units: ug/Kg

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: **B-6A**

Project # 06720-020-002-0108 Lab ID: **9605L149-009** Sample Date: 05/09/96 Date Received: 05/10/96

Units: ug/Kg

Tentatively Identified Compounds

Weston Environmental Metrics, Inc. (Gulf Coast)
VOLATILES BY GC/MS HSL LIST

RFW Batch Number: 960	05L188	VOL. Client: L.E.	ATILES BY GC/I	MS, HSL LIST Work	Coast) R Order: 06720-0	eport Date: 05/ 20-002-0	Page: 1a
	Cust ID:	B-1A	B-1A	B-1A	B-1C	B-1C	B-28 0
Sample Information	RFW#: Matrix:	001 SOIL	001 MS SOIL	001 MSD SOIL	005 SOIL	005 SOIL	006 SOIL
	D.F.: Units:	1 ug/Kg	1 ug/Kg	1 ug/Kg	1 ug/Kg	1 ug/Kg REPREP	1 ug/Kg
Surrogate Recovery 4-Bromof	oroethane-d4 Toluene-d8 luorobenzene	102 % 124 * % 79 %	116 % 120 * % 88 %	106 % 121 * % 74 %	105 % 116 % 86 %	115 % 121 * % 56 * %	105 % 102 % 93 %
Chloroethane 1,1-Dichloroethene Acetone Carbon Disulfide Methylene Chloride 1,2-Dichloroethene Vinyl acetate 2-Butanone Chloroform 1,1,1-Trichloroethane Carbon Tetrachloride Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloroprope 4-Methyl-2-pentanone Toluene trans-1,3-Dichloropro	otal)ne	12 12 12 12 12 15 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		46 % 52 % 60 % 74 % 92 % 166 * % 52 % 112 * %	13 U	13 U 13 13 13 13 13 6 6 6 6 6 6 6 6 6 6 6 6	

RFW Batch Number: 9605L188	Client: L.E.	Carpenter	Work (Order: 06720-02	0-002-0	Page: 1b
Cust ID:	B-1A	B-1A	B-1A	B-1C	B-1C	B-2B
RFW#:	001	001 MS	001 MSD	005	005 REPREP	006 ဘ
Ethy1benzene Ethy1benzene	6 U	105 %	118 %	6 U	6 U	5 UC
Styrene_	6 U	90 %	92 %	6 U	6 U	5 U
Bromoform	6 U	98 %	113 %	6 U	6 U	5 U
1,1,2,2-Tetrachloroethane	6 U	146 %	210 * %	6 U	6 U	5 U
<pre>Xylene (total) *= Outside of EPA CLP QC limits.</pre>	6 U	99 %	113 %	6 U	6 U	5 U

Weston Environmental Metrics, Inc. (Gulf Coast)
VOLATILES BY GC/MS HSL LIST

		weston Envir	CATILES BY GC/MS	, INC. (GUI	T Coast)	Penort Date:	05/20/96 13:53
RFW Batch Number: 960	5L188	<u> Client: L.E.</u>	Carpenter		<u>k Order: 06720</u>		Page: 2a
	Cust ID:	B-2A	B-3A	B-3B	VBLKUU	VBLKUU BS	VBLKUY 0
Sample Information	RFW#:	007	800	009	96GVF158-MB1	96GVF158-MB1	96GVB073-MB1
Intornaction	Matrix: D.F.:	SOIL 1	SOIL	SOIL 1	SOIL	SOIL	SOIL
	Units:	l ug/Kg	1 ug/Kg	1 ug/Kg	1 ug/Kg	1 ug/Kg	ug/Kg
	oroethane-d4	110 %	98 %	105 %	102 %	104 %	113 %
Surrogate	Toluene-d8	104 %	114 %	108 %	102 %	106 %	102 %
Recovery 4-Bromof	luorobenzene	95 %	76 %	101 %	100 %	97 %	94 %
Chlanamathana			=======f]===				
Vinyl chloride		11 U 11 U	11 U 11 U	12 U 12 U	10 U 10 U	52 % 64 %	10 U 10 U
Bromomethane		11 U	11 U	12 U	10 U	66 %	10 U
01.7		11 Ŭ	11 Ŭ	12 U	10 U	84 %	10 U
1,1-Dichloroethene			Ĝ Ŭ	6 Ŭ	5 Ŭ	109 %	5 Ü
Acetone		11 U	12	12 U	10 Ū	41 %	10 Ü
Carbon Disulfide		5 U	6 U	6 U	5 U	91 %	5 U
Methylene Chloride		5 U	6 U	6 U	5 U	105 %	5 U
1,2-Dichloroethene (to	otal)	5 U 5 U	6 U	6 U	5 U	106 %	5 U
1,1-Dichloroethane		5 U 11 U	6 U	6 U 12 U	5 U	104 %	.5 U
O Distriction		11 U	11 U 11 U	12 U 12 U	10 U 10 U	96 % 53 %	10 U 10 U
Chloroform		5 U	6 U	- 6 U	5 U	102 %	. 10 U
		ŠŬ	δÜ	6 Ü	5 U	101 %	5 Ü
Carbon Tetrachloride			6 Ŭ	· ĞÜ	Š Ŭ	97 %	ŏŬ
Berizerie		5 U 2 J	6 U	6 Ū	5 Ŭ	104 %	Š Ŭ
1,2-Dichloroethane		5 U	6 U	6 U	5 U	101 %	5 U
Trichloroethene		5 N	6 U	6 U	5 U	91 %	5 U
1,2-Dichloropropane		5 Ü	6 U	6 U	5 U	103 %	5 U
Bromodichloromethane_	200	5 U 5 U	6 U	6 U	5 U	102 %	5 U
cis-1,3-Dichloroproper 4-Methyl-2-pentanone		11 U	6 U 11 U	6 U 12 U	5 U 10 U	113 % 63 %	5 U 10 U
Toluene		5 U	6 U	6 U	5 U	107 %	10 U 5 U
trans-1 3-Dichloropror	pene	Š Ŭ	őÜ	δÜ	5 Ü	118 %	5 U
1,1,2-Trichloroethane		Š Ŭ	δŬ	ĕŬ	5 Ŭ	86 %	5 Ü
retrachioroethene		5 U	6 U	6 U	5 Ú	85 %	Š Ŭ
2-Hexanone		1 <u>1</u> U	11 U	12 U	10 Ü	50 %	10 U
Dibromochloromethane_		5 U	6 U	6 U	5 U	96 %	5 U
Chlorobenzene	00 1:11	5 U	6 U	6 U	5 U	102 %	5 U
*= Outside of EPA CLP	YU IIMITS.						

RFW Batch Number: 9605L188	Client: L.E.	Carpenter	Wor	k Order: 06720	-020-002-0	Page: 265
Cust ID:	B-2A	B-3A	B-3B	VBLKUU	VBLKUU BS	VBLKUY ~
RFW#:	007	800	009	96GVF158-MB1	96GVF158-MB1	96GVB073-MB1
Ethylbenzene Styrene Bromoform 1.1.2.2-Tetrachloroethane Xylene (total) *= Outside of EPA CLP QC limits.	5 U 5 U 5 U 5 U	6 U 6 U 6 U 6 U	6 U 6 U 6 U 6 U	5 U 5 U 5 U 5 U 5 U	107 % 100 % 78 % 82 % 102 %	5 U 5 U 5 U 5 U 5 U

Weston Environmental Metrics, Inc. (Gulf Coast)
VOLATILES BY GC/MS, HSL LIST
Client: L.E. Carpenter Work Order:

RFW Batch Number: 9605L188

IST Report Date: 05/20/96 13:53 Work Order: 06720-020-002-0 Page: 3a

Cust ID: VBLKUY BS

Sample Information

RFW#: 96GVB073-MB1 SOIL Matrix: D.F.:

Units:	ug/l	Kg	
1,2-Dichloroethane-d4 Surrogate Toluene-d8 Recovery 4-Bromofluorobenzene	108 99 96	% % %	=======f]======f]======f]======f]======f]
Chloromethane Vinyl chloride Bromomethane Chloroethane 1.1-Dichloroethene Acetone Carbon Disulfide Methylene Chloride 1.2-Dichloroethane Vinyl acetate 2-Butanone Chloroform 1.1.1-Trichloroethane Carbon Tetrachloride Benzene 1.2-Dichloroethane Trichloroethene 1.2-Dichloropropane Bromodichloromethane cis-1.3-Dichloropropene 4-Methyl-2-pentanone Toluene trans-1,3-Dichloropropene 1.1,2-Trichloroethane Tetrachloroethene 2-Hexanone Dibromochloromethane Chlorobenzene *= Outside of EPA CLP QC limits.	73 81 74 87 101 117 90 98 98 94 77 100 94 99 98 100 115 101 118 96 98 98	- ************************************	

RFW Batch Number: 9605L188 Client: L.E. Carpenter Work Order: 06720-020-002-0 Page: 3b Cust ID: VBLKUY BS

RFW#: **96GVB073-MB1**

Ethylbenzene	111	%	
Styrene	 97	%	
Bromoform	 97	%	
1,1,2,2-Tetrachloroethane	 93	%	
Xylene (total)	96	%	
*= Outside of FPA CLP OC limits		· -	

Attn: Ms. Tammy Edgington

Date: Tuesday May 21st, 1996

RE: **B-1A**

Project # 06720-020-002-0108 Lab ID: **9605L188-001** Sample Date: 05/10/96 Date Received: 05/13/96

Units: ug/Kg

Tentatively Identified Compounds

To: L.E. Carpenter

Roy F. Weston Incorporated 208 Welsh Pool Road Lionville, PA 19341-1225

Attn: Ms. Tammy Edgington

Date: Tuesday May 21st, 1996

RE: **B-1C**

Project # 06720-020-002-0108 Lab ID: **9605L188-005**

Lab ID: **9605L188-005**Sample Date: 05/10/96
Date Received: 05/13/96

Units: ug/Kg

Tentatively Identified Compounds

A.	Retention	Estimated	
Volatile Compound	Time	Concentration	
Unknown	12.821	11 J	
TRICHLOROFLUOROMETHANE	13.231	8 NJ	
Unknown	24.358	7 J	

Attn: Ms. Tammy Edgington

Date: Tuesday May 21st, 1996

RE: **B-2B**

Project # 06720-020-002-0108

Lab ID: **9605L188-006** Sample Date: 05/10/96 Date Received: 05/13/96

Units: ug/Kg

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Tuesday May 21st, 1996

RE: **B-2A**

Project # 06720-020-002-0108 Lab ID: **9605L188-007** Sample Date: 05/10/96 Date Received: 05/13/96

Units: ug/Kg

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Tuesday May 21st, 1996

RE: **B-3A**

Project # 06720-020-002-0108

Lab ID: **9605L188-008**Sample Date: 05/10/96
Date Received: 05/13/96

Units: ug/Kg

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Tuesday May 21st, 1996

RE: **B-3B**

Project # 06720-020-002-0108

Lab ID: **9605L188-009**Sample Date: 05/10/96
Date Received: 05/13/96

Units: ug/Kg

Tentatively Identified Compounds

Weston Environmental Metrics, Inc. (Gulf Coast)
VOLATILES BY GC/MS, HSL LIST

	hane oride ane ane oroethene Chloride Chloride oroethane tate chloroethane trachloride oroethane chloropropene chloropropene chloropropene chloropropene chloropropene chloroethane chloropropene chloropropene chloroethane chloroethane chloroethane chloroethane chloroethane chloroethane chloroethane chloroethane chloromethane chloromethane chloromethane chloromethane chloromethane chloromethane chloromethane chloromethane chloromethane	I.2-Dichloroethane-d4 Surrogate Toluene-d8 Recovery 4-Bromofluorobenzene	Information Mat	0	RFW Batch Number: 9605L215
ì.	551555511111 5515555555555555555555555	e-d4 106 % e-d8 99 % zene 104 %	Matrix: SOIL D.F.: 1 Units: ug/Kg	ID: B	VOL Client: L.E.
·)	11088954 110988954 11111 1111 111	108 % 111 % 97 %	SOIL 1 ug/Kg	B-5A	VOLATILES BY GC/MS.
	885986772756666444444444444444444444444444444	102 % 101 % 97 %	SOIL 1 ug/Kg	B-5A	HSL LIST
	114 114 114 114 114 114 114 114 114 114	103 · % 123 * % 87 %	SOIL 1 ug/Kg	B-9A	R O <u>rder: 06720-0</u>
	114 124 134 134 134 134 134 134 134 134 134 13	114 % 114 % 80 % 80 %	SOIL 1 ug/Kg REPREP	B-9A	eport Date: 05 20-002-0
- 71115 Sta	662366666666666666666666666666666666666	106 % 102 % 95 %	SOIL 1 ug/Kg	8.00 8.00	/22/96 08:57 Page: 1a

Ethylbenzene Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylene (total) *= Outside of EPA CLP QC Timits.	RFW#:	RFW Batch Number: 9605L215 Cust ID:
* ഗഗഗഗ ്————	001	Client: L.E. 6 B-5A
88 88 86 86 86	001 MS	Carpenter 8-5A
	001 MSD	Work Or B-5A
7 U .	005	Order: 06720-020-002-0 B-9A B-9
7 7 U U U U	005 REPREP	0-002-0 B-9A
	8 09	Page: 1b B-4B

.

.

.

)

Weston Environmental Metrics, Inc. (Gulf Coast)

RFW Batch Number: 96	505L215	VOL. Client: L.E. (ATILES BY GC/MS Carpenter	S, HSL LIST	k Order: 0672 0	Report Date: -020-002-0	05/22/96 08:57 Page: 2a
	Cust ID:	B-4A	B-4A	B-5B	VBLKTT	VBLKTT BS	ABTK00 10
Sample Information	RFW#: Matrix: D.F.:	009 SOIL 1	009 SOIL 1	014 SOIL 1	96GVT139-MB1 SOIL 1	96GVT139-MB1 SOIL	96GVB075-MB1 SOIL 1
	Units:	ug/Kg	ug/Kg REPREP	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Surrogate Recovery 4-Bromo	nloroethane-d4 Toluene-d8 ofluorobenzene	108 % 132 * % 80 %	118	101 % 92 % 99 %	105 % 102 % 101 %	104 % 101 % 101 %	110 % 98 % 88 %
Chloromethane Vinyl chloride Bromomethane Chloroethane 1,1-Dichloroethene Acetone Carbon Disulfide Methylene Chloride 1,2-Dichloroethene (1,1-Dichloroethane Vinyl acetate	pe	12 U	12 12 12 12 66 66 66 66 66 66 66 66 66 66 66 66 66	11 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU		======================================	10 U U U U U U U U U U U U U U U U U U U

RFW Batch Number: 9605L215	Client: L.E.	Carpenter	Wor	rk Order: 0672 0	-020-002-0	Page: 2b
Cust ID:	B-4A	B-4A	B-5B	VBLKTT	VBLKTT BS	VBLKU0
RFW#:	009	009 Reprep	014	96GVT139-MB1	96GVT139-MB1	96GVB075-MB1
Ethy1benzene Ethy1benzene	6 U	6 U	5 U	5 U	98 %	5 U 🔂
Styrene	6 U	6 U	5 U	5 U	96 %	5 U
Bromoform	6 JU	. 6 U	5 U	5 U	100 %	5 U
1,1,2,2-Tetrachloroethane	6 U	6 U	5 U	5 U	99 %	5 U
<pre>Xylene (total) *= Outside of EPA CLP QC limits.</pre>	6 J	6 U	5 U	5 U	95 %	5 U

Weston Environmental Metrics, Inc. (Gulf Coast)

Report Date: 05/22/96 08:57

VOLATILES BY GC/MS. HSL LIST

RFW Batch Number: 9605L215 Client: L.E. Carpenter Work Order: 06720-020-002-0 Page: Cust ID: VBLKUO BS RFW#: 96GVB075-MB1 Sample Information SOIL Matrix: D.F.: ug/Kg Units: 1.2-Dichloroethane-d4 112 Toluene-d8 Surrogate 98 98 4-Bromofluorobenzene Recovery -----f)=======f)=====f)=======f]======f]======f]======f]=====f] 36 Chloromethane 48 Vinvl chloride 54* Bromomethane % Chloroethane 58 1.1-Dichloroethene 98 Acetone Carbon Disulfide Methylene Chloride 96 1.2-Dichloroethene (total) 80 1.1-Dichloroethane Vinvl acetate 109 2-Butanone 115 84 Chloroform 1.1.1-TrichToroethane 90 Carbon Tetrachloride Benzene 1.2-Dichloroethane 94 86 Trichloroethene 1.2-Dichloropropane 95 108 Bromodichloromethane 117 cis-1,3-Dichloropropene 4-Methyl-2-pentanone 122 90 Toluene 117 trans-1.3-Dichloropropene 104 1.1.2-Trichloroethane 82 % Tetrachloroethene % 114 2-Hexanone Dibromochloromethane 116 Chlorobenzene 93 *= Outside of EPA CLP QC limits.

TUBS 5/22/96 _

15 Client: L.E. Carpenter
Cust ID: VBLKUO BS RFW Batch Number: 9605L215 Work Order: 06720-020-002-0 Page: 3b

RFW#: 96GVB075-MB1

Ethylbenzene	101	%
Styrene	93	%
Bromoform	106	%
1.1.2.2-Tetrachloroethane	108	%
Xylene (total)	91	%
*= Outside of EPA CLP QC limits.		

To: L.E. Carpenter

Roy F. Weston Incorporated 208 Welsh Pool Road

Lionville, PA 19341-1225

Attn: Ms. Tammy Edgington

Date: Wednesday May 22nd, 1996

RE: **B-5A**

Project # 06720-020-002-0108 Lab ID: **9605L215-001**

Sample Date: 05/13/96 Date Received: 05/14/96

Units: ug/Kg

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Wednesday May 22nd, 1996

RE: **B-9A**

Project # 06720-020-002-0108 Lab ID: **9605L215-005**

Sample Date: 05/13/96 Date Received: 05/14/96

Units: ug/Kg

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Wednesday May 22nd, 1996

RE: **B-4B**

Project # 06720-020-002-0108

Lab ID: **9605L215-006**Sample Date: 05/13/96
Date Received: 05/14/96

Units: ug/Kg

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Wednesday May 22nd, 1996

RE: **B-4A**

Project # 06720-020-002-0108

Lab ID: **9605L215-009**Sample Date: 05/13/96
Date Received: 05/14/96

Units: ug/Kg

Tentatively Identified Compounds

WESTERN

To: L.E. Carpenter

Roy F. Weston Incorporated 208 Welsh Pool Road

Lionville, PA 19341-1225

Attn: Ms. Tammy Edgington

Date: Wednesday May 22nd, 1996

RE: **B-5B**

Project # 06720-020-002-0108 Lab ID: **9605L215-014**

Lab ID: **9605L215-014** Sample Date: 05/13/96 Date Received: 05/14/96

Units: ug/Kg

Tentatively Identified Compounds

No Volatile Compounds greater than 10% of the nearest internal standard were tentatively identified by mass spectral library search. This is exclusive of any target compounds, surrogates or internal standards.

<u>RFW Batch N</u>	umber: 9605L215		OLATILES BY GO Carpenter	C/MS, SPECIAL L Wor	IST rk Order: 0672 0		05/22/96 11:04 Page: 1a
	Cust ID:	B1-1	B1-1	B1-1	B1-1	B1-2	B1-2 O
Sample Information	RFW#: Matrix: D.F.: Units:	002 SOIL 1 UG/KG	002 DL SOIL 5 UG/KG	002 MS S0IL 1 UG/KG	002 MSD SOIL 1 UG/KG	003 SOIL 1 UG/KG	003 DL SOIL 50 UG/KG
Surrogate Recovery	2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol p-Terphenyl-d14	72 % 82 % 69 % 71 % 81 % 72 %	0 7 %	74 % 82 % 70 % 77 % 61 % 94 %	76 % 85 % 74 % 77 % 58 % 94 %	63 % 81 % 72 % 69 % 80 % 84 %	0 D % 0 D % 0 D % 0 D % 0 D %
bis(2-Ethyll	nexyl)phthalate	14 000 E	27000	142 🗱 %	270 * %	6400 E	150000 D
					5/22/96		
	Cust ID:	FB03S	SBLKIC	SBLKIC BS	SBLKIC BSD	SBLKHX	SBLKHX BS
Sample Information	RFW#: Matrix: D.F.: Units:	WATER 1 UG/L	96GB0238-MB1 SOIL 1 UG/KG	96GB0238-MB1 SOIL 1 UG/KG	96GB0238-MB1 SOIL 1 UG/KG	96GB0240-MB1 WATER UG/L	96GB0240-MB1 WATER 1 UG/L
Surrogate Recovery	2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol p-Terphenyl-d14	46 % 47 % 51 % 60 % 67 % 85 %	68	63 % 70 % 61 % 77 % 75 % 88 %	60 % 67 % 54 % 67 % 74 % 96 %	48 % 50 % 53 % 58 % 66 % 99 %	67 % 70 % 80 % 86 % 90 % 83 %
bis(2-Ethyll *= Outside o	nexyl)phthalate of EPA CLP QC limits.	8 J	330 Ü	75 %	85 %	10 Ü	98 %

RFW Batch Nu	mber: 9605L215	SEMIV <u>Client: L.E</u>			SPECIAL LIST Work Order:	Report Date: 06720-020-002-0	05/22/96 11:04
	Cust ID:	SBLKHX BSD					800
Sample Information	RFW#; Matrix: D.F.: Units:	96GB0240-MB1 WATER 1 UG/L					
Surrogate Recovery	2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol p-Terphenyl-d14	85 % 87 % 100 %					
bis(2-Ethylho	exyl)phthalate	f): - * 105 %		:=f]====:	======f]======	-===f]=====f']=====f]

^{*=} Outside of EPA CLP QC limits.

RFW Batch Nu	umber: 9605L233	SEMIVOL Client: L.E.	ATILES BY GO Carpenter	C/MS, SPECIAL L Wor	IST <u>k Order: 06720</u>		05/29/96 16:20 Page: 22
	Cust ID:	B4-2	B4-2	B5-1	B5-1	B6-1	B6-1 ○
Sample Information	RFW#: Matrix: D.F.: Units:	006 SOIL 1 UG/KG	006 DL SOIL 40 UG/KG	007 SOIL 1 UG/KG	007 DL SOIL 10 UG/KG	008 SOIL 1 UG/KG	008 DL SOIL 2 UG/KG
Surrogate Recovery	2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol p-Terphenyl-d14	73 % 65 % 75 % 84 % 116 % 117 %		79 % 69 % 85 % 90 % 123 * % 130 %	0 D % % 0 D % % % % % % % % % % % % % %	78 % 63 % 74 % 87 % 110 % 122 %	0 D % 0 D %
bis(2-Ethylr	nexyl)phthalate	E	130000		40000	E	5700
	Cust ID:	B6-2	FB-04S	SBLKIQ	SBLKIQ BS	SBLKIQ BSD	SBLKHY
Sample Information	RFW#: Matrix: D.F.: Units:	009 SOIL 1 UG/KG	010 WATER 1 UG/L	96GB0254-MB1 SOIL 1 UG/KG	96GB0254-MB1 SOIL 1 UG/KG	96GB0254-MB1 SOIL 1 UG/KG	96GB0246-MB1 WATER 1 UG/L
Surrogate Recovery	2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol p-Terphenyl-d14	66 % 57 % 69 % 78 % 109 %	68 % 69 % 87 % 82 % 76 % 86 %	37 % 34 % 39 % 44 % 42 % 49 %	82 % 82 % 88 % 95 % 105 % 99 %	76 % 79 % 84 % 89 % 90 % 94 %	74 % 70 % 84 % 78 % 89 % 61 %
bis(2-Ethylh *= Outside o	nexyl)phthalate of EPA CLP QC limits.	2600	======↑ 18 B	330· U	92 %	93 %	3 J

<u>RFW Batch Nu</u>	umber: 9605L233	SEMIVOL Client: L.E.	ATILES BY GC/I Carpenter	MS, SPECIAL LIS Work	Order: 06720-	Report Date: 0 020-002-0	5/29/96 16:20 Page: 1a
·	Cust ID:	B2A-1	B2A-1	B2A-1	B2A-1	B2A-2	B2A-2 O
Sample Information	RFW#: Matrix: D.F.: Units:	001 SOIL 1 UG/KG	001 DL SOIL 10 UG/KG	001 MS SOIL 1 UG/KG	001 MSD SOIL 1 UG/KG	002 SOIL 1 UG/KG	002 DL SOIL 50 UG/KG
Surrogate Recovery	2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol p-Terphenyl-d14	27 % 23 * % 26 % 38 % 41 % 37 %	0	61 % 60 % 60 % 74 % 80 %	80 % 74 % 74 % 80 % 96 % 95 %	25 % 24 % 25 % 30 % 30 % 35 %	0 D % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bis(2-Ethylh	nexyl)phthalate	• E	39000	90 %	29 %	E E	220000
	Cust ID:	B3-1	B3-1	B3-2	B3-2	B4-1	B4-1
Sample Information	RFW#: Matrix: D.F.: Units:	003 SOIL 1 UG/KG	003 DL SOIL 10 UG/KG	004 SOIL 2 UG/KG	004 DL SOIL 200 UG/KG	005 SOIL 1 UG/KG	005 DL SOIL 10 UG/KG
Surrogate Recovery	2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol p-Terphenyl-d14	72 % 63 % 74 % 86 % 104 % 106 %	0 D % 0 0 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 * % 41	0 D % 0 0 % 0 0 0 % 0 0 0 0 0 0 0 0 0 0	64 % 49 % 67 % 76 % 95 % 103 %	0 D % 0 J % 0 J % 0 J %
bis(2-Ethylh *= Outside o	nexyl)phthalate of EPA CLP QC limits.	E	49000	======================================	790000	E	47000

Weston Environmental Metrics, Inc. (Gulf Coast)

SEMIVOLATILES BY GC/MS, SPECIAL LIST Report Date: 05/29/96 16:20

Client: L.E. Carpenter Work Order: 06720-002-0 Page: 3a

RFW Batch Nu	umber: 9605L233		E. Carpenter	Work Order: 06720-020-002-0 Page: 3a
	Cust ID:	SBLKHY BS	SBLKHY BSD	
Sample Information	RFW#: Matrix: D.F.: Units:	96GB0246-MB1 WATER 1 UG/L	96GB0246-MB1 WATER 1 UG/L	
Surrogate Recovery	2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol p-Terphenyl-d14		74 % 72 % 85 % 87 % 117 % 94 %	· f]f]
bis(2-Ethylh	nexyl)phthalate	104 %	106 %	

^{*=} Outside of EPA CLP QC limits.

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: SB-1-A

Project # 06720-020-002-0107 Lab ID: **9605G266-001** Sample Date: 05/15/96 Date Received: 05/17/96

Par	ameters		Result	Units	Reporting Limit	
* S	olids		89.4	*	0.10	
Lea	d, Total		2610	mg/kg	1.7	
	S News	1				
			,			
				,		
		. (

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182 Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533 Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-1-B**

Project # 06720-020-002-0107 Lab ID: **9605G266-002** Sample Date: 05/15/96 Date Received: 05/17/96

	Param	eters	ą.	Result	• Units	Reporting Limit	
	% So1	ids		90.0	*	0.10	
	Lead,	Total		2830	mg/kg	1.7	
•							
				•			
							-
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							
		-					
	 ,					·	
							L
			N ex		· · · · · · · · · · · · · · · · · · ·		
				·	* .		
-	 ·		12.		12 42 400		

Weston Environmental Metrics, Inc. 2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-1-C**

Project # 06720-020-002-0107

Lab ID: **9605G266-003** Sample Date: 05/15/96 Date Received: 05/17/96

Parameters	Result	Units	Reporting Limit
% Solids	91.8	*	0.10
Lead, Total	1030	mg/kg	1.6
	·		
			· · · · · · · · · · · · · · · · · · ·

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-2-A**

Project # 06720-020-002-0107 Lab ID: **9605G266-004** Sample Date: 05/15/96 Date Received: 05/17/96

Parameters	Result	Units	Reporting Limit
% Solids	89.8	%	0.10
Lead, Total	2340	mg/kg	2.1
			·
1			
	<u></u>		

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-2-B**

Project # 06720-020-002-0107 Lab ID: **9605G266-005** Sample Date: 05/15/96 Date Received: 05/17/96

	Parameters	·	Result	Units	Reporting Limit	
	% Solids		89.6	%	0.10	
	Lead, Total	u"	1690	mg/kg	1.1	
	p.					
·						
		54				
		il.		-		
		<u> </u>			The second secon	
				······································		
						· · · · · · · · · · · · · · · · · · ·

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-2-C**

Project # 06720-020-002-0107 Lab ID: **9605G266-006**

Sample Date: 05/15/96 Date Received: 05/17/96

	Parameters	Result	t Units	Reporting Limit	
	% Solids	85.2	*	0.10	
·	Lead, Total	678	mg/kg	2.0	
	<u></u>			· · · · · · · · · · · · · · · · · · ·	
		<u> </u>			
		· · · · · · · · · · · · · · · · · · ·			
·					
					···-

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-3-A**

Project # 06720-020-002-0107

Lab ID: **9605G266-007** Sample Date: 05/15/96 Date Received: 05/17/96

Parameters	Result	Units	Reporting Limit
% Solids	. 89.8	*	0.10
Lead, Total	1770	mg/kg	1.4
			, , , , , , , , , , , , , , , , , , , ,
<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·			
	- Canada de Canada d		
	······································		

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182 Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

To: L.E. Carpenter Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-3-B**

Fax: (708) 534-5211

Project # 06720-020-002-0107 Lab ID: **9605G266-008** Sample Date: 05/15/96 Date Received: 05/17/96

		•				
	Parameters		Result	Units	Reporting Limit	
	% Solids		85.9	*	0.10	
	Lead, Total		1410	mg/kg	2.1	
1						
		T.				
		. h				
			· · · · · · · · · · · · · · · · · · ·			,
	,					
		1.7				
\$		· · · · · · · · · · · · · · · · · · ·				
					<u> </u>	
			·:: · · · · · · · · · · · · · · · · · ·	<u></u>		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-3-C**

Project # 06720-020-002-0107 Lab ID: **9605G266-009** Sample Date: 05/15/96 Date Received: 05/17/96

	Parameters		Result	Units	Reporting Limit
	% Solids		85.3	*	0.10
•	Lead, Total		2280	mg/kg	2.1
		i .			
1					
- · · · · · · · · · · · · · · · · · · ·		Tak May on			7 - A - A - A - A - A - A - A - A - A -
				· · · · · · · · · · · · · · · · · · ·	
		#.			
ř		•			

Weston Environmental Metrics, Inc. 2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-4-A**

Project # 06720-020-002-0107 Lab ID: **9605G266-010** Sample Date: 05/15/96 Date Received: 05/17/96

	Parameters	Result	Units	Reporting Limit
	% Solids	88.9	*	0.10
	Lead, Total	1870	mg/kg	1.7
	· · · · · · · · · · · · · · · · · · ·			
	· 	· · · · · · · · · · · · · · · · · · ·		
	•			
	, , , , , , , , , , , , , , , , , , ,			
		· · · · · · · · · · · · · · · · · · ·		
				900 to 100 to
······································	1'			
		· · · · · · · · · · · · · · · · · · ·		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-4-B**

Project # 06720-020-002-0107 Lab ID: **9605G266-011** Sample Date: 05/15/96 Date Received: 05/17/96

Parame	eters	Result	Units	Reporting Limit
% So1	ids	87.1	*	0.10
Lead,	Total	1110	mg/kg	2.0
1				
		VII.		
				, , , , , , , , , , , , , , , , , , ,
TWO likes it is a second of the second of th				
		` ` `		
	 		. =	

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-4-C**

Project # 06720-020-002-0107 Lab ID: **9605G266-012** Sample Date: 05/15/96 Date Received: 05/17/96

Parameters	Result	Units	Reporting Limit	
% Solids	78.2	*	0.10	
Lead, Total	47.7	mg/kg	1.8	
	· · · · · · · · · · · · · · · · · · ·			
				
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
*	n 5, 5, s			
				
			W. (C.) W. (C.) C.	
		·		
·				
	· · · · · · · · · · · · · · · · · · ·	<u> </u>		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **FB-05S**

Project # 06720-020-002-0107 Lab ID: **9605G266-013** Sample Date: 05/15/96 Date Received: 05/17/96

Parameters	Result	Units	Reporting Limit
Lead, Total	19.5 u	ug/L	19.5
			·
· · · · · · · · · · · · · · · · · · ·			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-8-A**

Project # 06720-020-002-0107 Lab ID: **9605G266-014** Sample Date: 05/15/96 Date Received: 05/17/96

	Parameters	Result	Units	Reporting Limit	
	% Solids	94.7	*	0.10	
	Lead, Total	282	mg/kg	2.0	٠
	,				
gradient de la company de la c					
	1				
		· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·			MARINE, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	
	-			- j	····
	· · · · · · · · · · · · · · · · · · ·	ng 2 alter			
: :	and the second s				

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-8-B**

Project # 06720-020-002-0107 Lab ID: **9605G266-015**

Lab ID: **9605G266-015**Sample Date: 05/15/96
Date Received: 05/17/96

						Reporting
		Parameters		Result	Units	Reporting Limit
		% Solids		83.5	*	0.10
		Lead, Total	1	8.1	mg/kg	1.2
			,			
	** #		······································			
			F. F.			
	<u>.</u>					
			4. 10.			
			<u>-</u>			
			<u> </u>			, , , , , , , , , , , , , , , , , , , ,
				,		
						<u> </u>
		<u> </u>	April 1			
····				·		
				·		
	·				*	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-8-C**

Project # 06720-020-002-0107 Lab ID: **9605G266-016**

Sample Date: 05/15/96 Date Received: 05/17/96

	Parameters	Result	Units	Reporting Limit
·	% Solids	84.2	*	0.10
	Lead, Total	19.1	mg/kg	2.2
	<u> </u>			
	,			
	And the second s			
		7		
······································				

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-9-A**Project # 06720-020-002-0107
Lab ID: **9605G266-017**Sample Date: 05/15/96
Date Received: 05/17/96

	Parameters	Result	Units	Reporting Limit
	% Solids	88.8	*	0.10
	Lead, Total	1490	mg/kg	2.0
	ing to the second of the secon			
1				
			1000	
				· ·
				

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-9-B**

Project # 06720-020-002-0107 Lab ID: **9605G266-018**

Sample Date: 05/15/96 Date Received: 05/17/96

	Parameters	Result	Units	Reporting Limit
	% Solids	84.6	*	0.10
	Lead, Total	110	mg/kg	1.4
		:		
1		in and a second		

		S	 	
			-	
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·			

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-9-C**

Project # 06720-020-002-0107

Lab ID: **9605G266-019**Sample Date: 05/15/96
Date Received: 05/17/96

	Parameters		Result	Units	Reporting Limit
	% Solids	•	84.0	*	0.10
	Lead, Total		12.4	mg/kg	1.6
1					
, , , , , , , , , , , , , , , , , , , ,		- 11 (1-812	· <u></u> .		
· · ·		100 - 2			
• •					
			•		
7		······································			
<u> </u>					
		· · · · · · · · · · · · · · · · · · ·			
·					
		 			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-10-A**

Project # 06720-020-002-0107 Lab ID: **9605G266-020** Sample Date: 05/15/96 Date Received: 05/17/96

		,, ,		
	Parameters	Result	Units	Reporting Limit
	% Solids	88.3	*	0.10
	Lead. Total	1670	mg/kg	1.8
		·		
,				
And the second s				
		· · · · · · · · · · · · · · · · · · ·		
		·		
<u> </u>				
	71-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
		3 # #		
		1		

Weston Environmental Metrics, Inc. 2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: SB-10-B

Project # 06720-020-002-0107 Lab ID: **9605G266-021** Sample Date: 05/15/96 Date Received: 05/17/96

Parameters	Result	Units	Reporting Limit	
% Solids	92.0	*	0.10	
Lead, Total	1240	mg/kg	1.9	
	•		×	·
	·			÷
		-	·	
		· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·		

Weston Environmental Metrics, Inc. 2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: SB-10-C

Project # 06720-020-002-0107 Lab ID: **9605G266-022** Sample Date: 05/15/96 Date Received: 05/17/96

Parameters	r	Result	Units	Reporting Limit
% Solids		77.9	*	0.10
Lead, Total		35.1	mg/kg	2.3
	p on the			
			· · · · · · · · · · · · · · · · · · ·	
		<u>.</u>		
	· .			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-15-B**

Project # 06720-020-002-0107 Lab ID: **9605G289-001** Sample Date: 05/16/96 Date Received: 05/18/96

Parameters	Result	Units	Reporting Limit
% Solids	87.0	*	0.10
Lead, Total	1520	mg/kg	2.1

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-7-B**

Project # 06720-020-002-0107 Lab ID: **9605G289-002**

Sample Date: 05/16/96 Date Received: 05/18/96

			.оро. о		
 Parameter	rs	Result	* Units	Report Limi	ing t
% Solids		81.2	*	0.10	
 Lead, Tot		116	mg/kg	1.8	
		•			
	1 1 1				
				1. (A.S.) 1. (A.S.)	1919
	- And			· · · · · · · · · · · · · · · · · · ·	

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-7-A**

Project # 06720-020-002-0107 Lab ID: **9605G289-003** Sample Date: 05/16/96 Date Received: 05/18/96

Parameters	Result	t Units	Reporting Limit	
% Solids	89.1	*	0.10	
Lead, Total	623	mg/kg	1.9	
		4 1 .		
				<u> </u>
				

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-7-C**

Project # 06720-020-002-0107 Lab ID: **9605G289-004** Sample Date: 05/16/96 Date Received: 05/18/96

Parameters	<u>.</u>	Result		Units	Reporting Limit
Solids	1.2	76.9		*	0.10
 ead, Total	. 10	12.8		mg/kg	2.1
			• • •	•	
					Company of the State of the Sta

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-6-A**

Project # 06720-020-002-0107 Lab ID: **9605G289-005** Sample Date: 05/16/96 Date Received: 05/18/96

	Param	eters	Result	Units	Reporting Limit
	% So1	ids	88.8	*	0.10
	Lead,	Total	2410	mg/kg	1.7
					
Light State					
			,		
	· · · · · · · · · · · · · · · · · · ·		F 7 1 . 11		
				-	
			r .		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **FB-06S**

Project # 06720-020-002-0107 Lab ID: **9605G288-001**

Sample Date: 05/16/96 Date Received: 05/18/96

	Parameters		Result	Units	Reporting Limit	
	Lead, Total		19.5 u	ug/L	19.5	
Var franch			<u> </u>			
		din				
		<u>l</u> <u>ta</u>		· · · · · · · · · · · · · · · · · · ·		

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: SB-15-A

Project # 06720-020-002-0107 Lab ID: **9605G288-002**

Lab ID: **9605G288-002** Sample Date: 05/16/96 Date Received: 05/18/96

Parameters	Result •	Units	Reporting Limit
% Solids	87.5	*	0.10
 Lead, Total	2160	mg/kg	1.9
		· · · · · · · · · · · · · · · · · · ·	
t .			
, , , , , , , , , , , , , , , , , , , 	:		
	.		

Weston Environmental Metrics, Inc. 2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: SB-16-C

Project # 06720-020-002-0107 Lab ID: **9605G288-003** Sample Date: 05/16/96 Date Received: 05/18/96

Paramet	ters	Result	Units	Reporting Limit	
% Solid	İs	85.5	*	0.10	
Lead, T	 	63.6	mg/kg	2.0	
			· · · · · · · · · · · · · · · · · · ·		
	:	4			,
		<u> </u>		andra 😲 , a transportante e e e e e e e e e e e e e e e e e e	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-13-B

Project # 06720-020-002-0107 Lab ID: **9605G288-004** Sample Date: 05/16/96 Date Received: 05/18/96

Parameters	Result	Units	Reporting Limit
% Solids	91.8	%	0.10
Lead, Total	30.9	mg/kg	1.8
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	
			• • • • • • • • • • • • • • • • • • • •
	And the second s		

Weston Environmental Metrics, Inc. 2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-13-A

Project # 06720-020-002-0107 Lab ID: **9605G288-005** Sample Date: 05/16/96 Date Received: 05/18/96

Parameters	Result	Units	Reporting Limit
% Solids	84.2	*	0.10
Lead, Total	307	mg/kg .	1.7
·			
	1		
			······································
	·		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-12-B

Project # 06720-020-002-0107 Lab ID: **9605G288-006**

Sample Date: 05/16/96 Date Received: 05/18/96

	Parameters	*	Result	Units	Reporting Limit
	% Solids		92.6	*	0.10
	Lead, Total	ν.	1250	mg/kg	1.7
,					
'					
			•	,	
			. 1		
		· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·		1			
and the second s					
		· · · · · · · · · · · · · · · · · · ·			,
			······································		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-11-B

Project # 06720-020-002-0107 Lab ID: **9605G288-007** Sample Date: 05/16/96 Date Received: 05/18/96

Param	eters	Result	Units	Reporting Limit
% So1	ids	93.9	*	0.10
Lead,	Total	94.0	mg/kg	1.4
	a nana sanan			
	* ,		· · · · · · · · · · · · · · · · · · ·	
	and the second s		· ,	
				
······································	 			
		· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·	
		•		and the desire of the second s
		,	,	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-12-A

Project # 06720-020-002-0107 Lab ID: **9605G288-008** Sample Date: 05/16/96 Date Received: 05/18/96

Parameters	Result	Units	Reporting Limit
% Solids	84.9	*	0.10
Lead, Total	437	mg/kg	1.5
			N
· · · · · · · · · · · · · · · · · · ·			
u seek			

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-11-C

Project # 06720-020-002-0107 Lab ID: **9605G288-009**

Lab ID: **9605G288-009**Sample Date: 05/16/96
Date Received: 05/18/96

Parameters		Result	Units	Reporting Limit
% Solids	n ben Vegan	79.5	*	0.10
Lead, Total		13.5	mg/kg	2.2
			· · · · · · · · · · · · · · · · · · ·	
		· · ·		
	مست			
		•		***
			,	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-12-C

Project # 06720-020-002-0107 Lab ID: **9605G288-010** Sample Date: 05/16/96 Date Received: 05/18/96

Parameters	Result	Units	Reporting Limit
% Solids	89.0	*	0.10
Lead, Total	261	mg/kg	1.9

			·
		A, *	
	, 		
	•		

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182 Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-11-A

Project # 06720-020-002-0107 Lab ID: **9605G288-011** Sample Date: 05/16/96 Date Received: 05/18/96

	Parameters	Result	Units	Reporting Limit
	% Solids	85.4	*	0.10
	Lead, Total	472	mg/kg	1.6
		· in the state of		
1				
	<u> </u>		,	
			_	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
				· · · · · · · · · · · · · · · · · · ·
				·
		en ja er en en en en en en en en en en en en en		

Weston Environmental Metrics, Inc. 2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **C-7-B**

Project # 06720-020-002-0109 Lab ID: **9605G339-014** Sample Date: 05/20/96 Date Received: 05/22/96

	Parameters	Result	Units	Reporting Limit
	% Solids	82.4	*	0.10
	Lead, Total	1510	mg/kg	2.0
		8		
		·		
			•	
· · · · · · · · · · · · · · · · · · ·				
		r ;		
			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	ž.,			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **FB-09S**

Project # 06720-020-002-0109

Lab ID: 9605G339-015 Sample Date: 05/20/96 Date Received: 05/22/96

Metals Data Report

Paramo	eters		Result		Units	Reporting Limit
Lead,	Total	<u> </u>	19.5	u	ug/L	19.5
		1. p. i	•			
		;	-			
	,					
	·					
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182 Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-5-B**

Project # 06720-020-002-0107 Lab ID: **9605G288-012** Sample Date: 05/16/96 Date Received: 05/18/96

	Parameters		Result	Units	Reporting Limit	
	% Solids		88.0	*	0.10	
	Lead, Total	al di	1810	mg/kg	2.0	•
		r				
1				·		
· · · · · · · · · · · · · · · · · · ·		<u> </u>			· · · · · · · · · · · · · · · · · · ·	
·	7.7.7.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4				······································	·· <u>·</u>
·		<u> </u>				
				· · · · · · · · · · · · · · · · · · ·		
					·	
······ ;-		n'				

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-16-B**

Project # 06720-020-002-0107 Lab ID: **9605G288-013**

Lab ID: **9605G288-013**Sample Date: 05/16/96
Date Received: 05/18/96

	Parameters		Result	Units	Reporting Limit
	% Solids		82.7	*	0.10
	Lead, Total		65.1	mg/kg	1.5
18					
		- 1 - 12 1- 21 - 14 - 1	<u></u>		
		-: 10 1	,	- 	The second secon
			**** *** **** ****		
		······································			
· ·		THE RESERVE TO SERVE THE PERSON OF THE PERSO		· · · · · · · · · · · · · · · · · · ·	
		* .			***************************************
		<u> </u>		· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·		
				1 - 40 - 500	

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-5-D**

Project # 06720-020-002-0107 Lab ID: **9605G288-014** Sample Date: 05/16/96 Date Received: 05/18/96

		Parameters		Result	Units	Reporting Limit	
		% Solids		85.9	*	0.10	
		Lead, Total		306	mg/kg	2.2	
			1				-
							. ,
			. ,				
			· · · · · · · · · · · · · · · · · · ·				
A			: :				
			<u> </u>				
			1				
	· · · · · · · · · · · · · · · · · · ·						
			· · · · · · · · · · · · · · · · · · ·				
			10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -				

Weston Environmental Metrics, Inc. 2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-5-C**

Project # 06720-020-002-0107 Lab ID: **9605G288-015**

Lab ID: **9605G288-015**Sample Date: 05/16/96
Date Received: 05/18/96

	Para	meters	Result	Units	Reporting Limit	
1	% So	lids	81.6	*	0.10	
	Lead	, Total	474	mg/kg	2.0	
1		****				
		 				
					,	
			. 		***	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-5-A**

Project # 06720-020-002-0107 Lab ID: **9605G288-016** Sample Date: 05/16/96 Date Received: 05/18/96

	Parameters	Result	Units	Reporting Limit
	% Solids	88.2	*	0.10
	Lead, Total	1490	mg/kg	1.7
	·			
1				
		<u> </u>		
·				
· · · · · · · · · · · · · · · · · · ·				
		the Automotive Committee		
V				

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: SB-15-C

Project # 06720-020-002-0107

Lab ID: **9605G288-017**Sample Date: 05/16/96
Date Received: 05/18/96

Parameters	Result	Units	Reporting Limit
% Solids	81.0	%	0.10
Lead, Total	5040	mg/kg	2.4
			; ·
	3°		
	· · · · · · · · · · · · · · · · · · ·	·············	
	<u> </u>	•	· · · · · · · · · · · · · · · · · · ·
	njerovi se smrti se se se se se se se se se se se se se		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-6-C**

Project # 06720-020-002-0107 Lab ID: **9605G288-018** Sample Date: 05/16/96 Date Received: 05/18/96

Parameters	Result	Units	Reporting Limit	
% Solids	86.3	*	0.10	
Lead, Total	245	mg/kg	1.5	
				 ,
	<u> </u>			
	· · · · · · · · · · · · · · · · · · ·			
				,

Weston Environmental Metrics, Inc.
2417 Bond Street
University Park, Illinois 60466-3182
Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: SB-16-A

Fax: (708) 534-5211

Project # 06720-020-002-0107

Lab ID: **9605G288-019** Sample Date: 05/16/96 Date Received: 05/18/96

		game baca nepo	. •	
	ameters	Result	Units	Reporting Limit
% So	olids	90.3	*	0.10
Lead	i, Total	380	mg/kg	2.0
	P	3 · · · · · · · · · · · · · · · · · · ·	·	
				-
		· · · · · · · · · · · · · · · · · · ·		
				
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		,	
		1	<u> </u>	
				
		- Control of the Cont	····	
			· · · · · · · · · · · · · · · · · · ·	
· .		· · · · · · · · · · · · · · · · · · ·		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **SB-6-B**

Project # 06720-020-002-0107 Lab ID: **9605G288-020**

Sample Date: 05/16/96 Date Received: 05/18/96

Para	meters	Result	Units	Reporting Limit
% So	lids	82.7	%	0.10
	, Total	31.7	mg/kg	2.1
	, .			
			,	
			· ,	
	· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·	•	
	: ;			
		,		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F Weston Incorr

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: 4-DEL-7

Project # 06720-020-002-0109

Lab ID: **9605G320-016** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

•	Semivolatile Compound		Resu	ılt	Reporting Limit	Reporting Limit Flag		
	bis(2-Ethylhexyl)phthala	Toronto A	Ε)	390	· .		
	And the second s	12 Marie		<i>.</i> .				
1 /					·			
		er et sind 1 west						
						,	•	
			· · · · · · · · · · · · · · · · · · ·			-, · · · · · · · · · · · · · · · ·		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: 4-DEL-7

Project # 06720-020-002-0109 Lab ID: **9605G320-016 DL** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

	Semivolatile Compound	Result	Reporting Limit	Flag
	bis(2-Ethylhexyl)phthalate	92000	7800	D
				1
			· · · · · · · · · · · · · · · · · · ·	
			.a.	
- 1955 - 1955 - 1955 - 1955 - 1955 - 1955 - 1955 - 1955 - 1955 - 1955 - 1955 - 1955 - 1955 - 1955 - 1955 - 195				· · · · · · · · · · · · · · · · · · ·
		•		
	 			
	Transfer was the control of the cont			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: 4-DEL-8

Project # 06720-020-002-0109 Lab ID: **9605G320-017** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

	Semivolatile Compou	nd Re	esult	Reporting Limit Flag	
	bis(2-EthyThexy1)phthala	te E		390	
1					
				· · · · · · · · · · · · · · · · · · ·	
		7 Jan 200			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: 4-DEL-8

Project # 06720-020-002-0109 Lab ID: **9605G320-017 DL** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

Semivolatile Compound bis(2-Ethylhexyl)phthalate		Result	Reporting Limit	} Flag		
		47000	3900	D		
		· · · · · · · · · · · · · · · · · · ·				
						······································
					•	

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: HS4-PES-10C

Project # 06720-020-002-0109 Lab ID: **9605G320-018** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

	Semivolatile Compound	Result	Reporting Limit	Flag		
	bis(2-Ethylhexyl)phthalate	. Е	370			
		·		· · · · · · · · · · · · · · · · · · ·		
			<u> </u>			_
						_
			, , , , , , , , , , , , , , , , , , , ,			
						_
						_
			·		· · · · · · · · · · · · · · · · · · ·	
- 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
		·				

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: HS4-PES-10C

Project # 06720-020-002-0109 Lab ID: **9605G320-018 DL** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

	Semivola	tile Compound	Result	Reporting Limit Flag	
	bis(2-Ethylhe	xyl)phthalate	5600000	370000 D	
)					
				· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: **HS4-PES-10B**

Project # 06720-020-002-0109

Lab ID: **9605G320-019**Sample Date: 05/17/96
Date Received: 05/21/96

Units: ug/Kg

Semivolatile Compound	Result	Reporting Limit I	-lag
bis(2-Ethylhexyl)phthalate	E	390	
	7		
	·		
			·
	· · · · · · · · · · · · · · · · · · ·		

Weston Environmental Metrics, Inc. 2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: **HS4-PES-10B**

Project # 06720-020-002-0109 Lab ID: **9605G320-019 DL** Sample Date: 05/17/96

Date Received: 05/21/96

Units: ug/Kg

Semivol	atile Compound	Result	Reporting Limit	Flag	
bis(2-Ethy1h	exyl)phthalate	14000000	1600000	D	
					_
					_
				-	
	и				 _
		<u>, , , , , , , , , , , , , , , , , , , </u>		<u></u>	 _
					
		· · · · · · · · · · · · · · · · · · ·			
	**		· · · · · · · · · · · · · · · · · · ·	···	
				· · · · · · · · · · · · · · · · · · ·	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: 4-DEL-9

Project # 06720-020-002-0109 Lab ID: **9605G320-020** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

	Semivolatile Compound	Result	Reporting Limit Flag	
	bis(2-Ethylhexyl)phthalate	E	380	
				·
)				
			,	
				-

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: 4-DEL-9

Project # 06720-020-002-0109 Lab ID: **9605G320-020 DL** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

		Semivolatile Compoun	ď	Result	Reporting Limit	J Flag		
	*	bis(2-Ethylhexyl)phthalat	e	29000	1900	D		
			1					
		A CONTRACTOR OF THE STATE OF TH			•			
	-							
	÷							
				•				
					•			
			h .h.					
			Emiliary Law 1	-				
			,					
	÷.			 		· .		
					- 	· · · · · · · · · · · · · · · · · · ·		_
			1			······································		
iii.ik.ik	. ,,		<u> </u>		· · · · · · · · · · · · · · · · · · ·		<u> </u>	
		19 55 2	;					

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: **4-DEL-6**

Project # 06720-020-002-0109

Lab ID: **9605G320-021**Sample Date: 05/17/96
Date Received: 05/21/96

Units: ug/Kg

Semivolatile Compoun	d	Result	Reporting Limit Flag		
bis(2-Ethylhexyl)phthalat	е	E	370		
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	i per	· · · · · · · · · · · · · · · · · · ·			
				:	
	6 y				
· · · · · · · · · · · · · · · · · · ·					<u> </u>
	6 (50 E 36 T 17 T 17 T 17 T 17 T 17 T 17 T 17 T 1				
					
			· · · · · · · · · · · · · · · · · · ·		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: **4-DEL-6**

Project # 06720-020-002-0109

Lab ID: **9605G320-021** DL Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

Semivolatile Compound	Result	Reporting Limit	Flag
bis(2-Ethylhexyl)phthalate	8100	740	D
			······································
		,	
	". : 		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: 4-DEL-5

Project # 06720-020-002-0109 Lab ID: **9605G320-022**

Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

Semivol	atile Compound	Result	Reporting Limit Flag	
bis(2-Ethy)		Ε	380	
			· · · · · · · · · · · · · · · · · · ·	
		in the second se		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: 4-DEL-5

Project # 06720-020-002-0109 Lab ID: **9605G320-022 DL** Sample Date: 05/17/96

Date Received: 05/21/96

Units: ug/Kg

		Semivolatile Compound	Result	Reporting Limit	Flag	
1 1x 1/4		bis(2-Ethylhexyl)phthalate	18000	1900	D	
	· · · · · · · · · · · · · · · · · · ·					
·) :						<u></u>
					-	
			·			
					·····	
· · · · · · · · · · · · · · · · · · ·						
*			·			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Monday June 3rd, 1996

RE: **FB-07S**

Project # 06720-020-002-0109

Lab ID: **9605G320-023** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/L

·	Semivolatile Compound		Result	Reporting Limit	g Flag	
	bis(2-Ethylhexyl)phthalate		5	10	JB	
						~
1400 million 1		·				·
		,				
		<u> </u>	· · · · · · · · · · · · · · · · · · ·			
		:				
					· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·				

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182 Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-3-A

Fax: (708) 534-5211

Project # 06720-020-002-0109 Lab ID: **9605G320-001** Sample Date: 05/17/96 Date Received: 05/21/96

•	Parameters	Result	Units	Reporting Limit
	% Solids	85.9	*	0,10
	Lead, Total	797	mg/kg	1.8
			,	. At
			· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·	****

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-6-C

Project # 06720-020-002-0109

Lab ID: **9605G320-002** Sample Date: 05/17/96 Date Received: 05/21/96

		-1.5. 3.4		P		
	Parameters	3	Result	Units	Reporti Limit	ng
	% Solids		74.2	*	0.10	
7.2.	Lead, Tota		218	mg/kg	2.3	
					* 1. (3.) * 1. (3.) * 1. (3.)	ter.
		F. W. 7, F. 294. S				
					14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			<u>;</u>			
						· t
		,				

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-6-B

Project # 06720-020-002-0109 Lab ID: **9605G320-003**

Lab ID: **9605G320-003**Sample Date: 05/17/96
Date Received: 05/21/96

Parameters	Result	t Unit	
% Solids	89.5	*	0.10
Lead, Total	513	mg/k	g 1.5
		-	
	h		
	P. Commission		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E._Carpenter Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-6-A

Project # 06720-020-002-0109 Lab ID: **9605G320-004** Sample Date: 05/17/96 Date Received: 05/21/96

Paramete	ers	Result	Units	Reporting Limit		
🕻 Solid	\$	87.1	*	0.10		
Lead, To		242	mg/kg	1.7		
	·			· · · · · · · · · · · · · · · · · · ·		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-5-A

Project # 06720-020-002-0109 Lab ID: **9605G320-005** Sample Date: 05/17/96 Date Received: 05/21/96

Parameters	Result	Units	Reporting Limit
% Solids	91.8	%	0.10
Lead, Total	77.2	mg/kg	1.2
	- 4/4		
	1		
			······································
	<u>. d</u>	·	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-2-A

Project # 06720-020-002-0109 Lab ID: **9605G320-006**

Sample Date: 05/17/96 Date Received: 05/21/96

				_			
	Parameters		Result	Units	Reporting Limit		
	% Solids		85.0	*	0.10		
	Lead, Total		215	mg/kg	2.3		
			· .			٠	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				·.			
	A Company of the Comp						
						···	
· · · · · · · · · · · · · · · · · · ·							
		10 to 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18					
				· · · · · · · · · · · · · · · · · · ·			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-7-A

Project # 06720-020-002-0109 Lab ID: **9605G339-007**

Lab ID: **9605G339-007** Sample Date: 05/20/96 Date Received: 05/22/96

	Parameters	Result	Units	Reporting Limit
	% Solids	85.5	*	0.10
	Lead, Total	2610	mg/kg	2.1
			 	
Thirty was a second				
<u> </u>				

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-10-B

Project # 06720-020-002-0109 Lab ID: **9605G339-008** Sample Date: 05/20/96 Date Received: 05/22/96

	Param	eters	Result	Units	Reporting Limit	
	% So1	ids	87.5	*	0.10	
		Total	1890	mg/kg	1.9	
44.5						
						, ·
			и	· · · · · · · · · · · · · · · · · · ·	-	
			**			
			A		,	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-10-D

Project # 06720-020-002-0109 Lab ID: **9605G339-009**

Lab ID: **9605G339-009** Sample Date: 05/20/96 Date Received: 05/22/96

Parameters	Result	Units	Reporting Limit
% Solids	90.4	*	0.10
Lead, Total	871	mg/kg	1.5
			· · · · · · · · · · · · · · · · · · ·

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-9-A

Project # 06720-020-002-0109

Lab ID: **9605G339-010** Sample Date: 05/20/96 Date Received: 05/22/96

Parameters	Result	Units	Reporting Limit
% Solids	79.9	*	0.10
Lead, Total	2420	mg/kg	1.6
	g to desire		· · · · · · · · · · · · · · · · · · ·
14:			
			·

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-9-C

Project # 06720-020-002-0109 Lab ID: **9605G339-011**

Lab ID: **9605G339-011**Sample Date: 05/20/96
Date Received: 05/22/96

	Parameters	Result	Units	Reporting Limit		
*	% Solids	87.9	*	0.10		
	Lead, Total	233	mg/kg	1.7		
	·		·			
·						

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-1-A

Project # 06720-020-002-0109 Lab ID: **9605G320-008**

Lab ID: **9605G320-008**Sample Date: 05/17/96
Date Received: 05/21/96

rameters Solids	Result	Units %	Reporting Limit 0.10
ad, Total	354	mg/kg	1.6
			er verden er en en en en en en en en en en en en en
. •		7	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-3-B

Project # 06720-020-002-0109

Lab ID: **9605G320-009**Sample Date: 05/17/96
Date Received: 05/21/96

Parameters % Solids	Result 81.3	Units %	Reporting Limit 0.10
Lead, Total	758	mg/kg	2.0
		·	*** · · · · · · · · · · · · · · · · · ·
	in restriction to the second s		
	Andrew Control of the		
			· · · · · · · · · · · · · · · · · · ·
	Ť:	j v v v v v v v v v v v v v v v v v v v	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-1-C

Project # 06720-020-002-0109

Lab ID: 9605G320-010 Sample Date: 05/17/96 Date Received: 05/21/96

	Parameters	Result	Units	Reporting Limit
	% Solids	82.7	*	0.10
	Lead, Total	8.6	mg/kg	2.3
		· .		· · ·
P			Mark and a second second second second second second second second second second second second second second se	· · · · · · · · · · · · · · · · · · ·
		·		
		·		<u> </u>

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-2-B

Project # 06720-020-002-0109 Lab ID: **9605G320-011** Sample Date: 05/17/96 Date Received: 05/21/96

		•		
Parameters		Result	Units	Reporting Limit
% Solids		83.5	*	0.10
Lead, Total		818	mg/kg	2.0
	Д.			
	TTTSST grant \$100. or miller			
**				

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-5-B

Project # 06720-020-002-0109 Lab ID: **9605G320-012** Sample Date: 05/17/96 Date Received: 05/21/96

	Parameters		Result	Units	Reporting Limit
	% Solids	a .	81.5	*	0.10
	Lead, Total		44.1	mg/kg	2.0
en en en en en en en en en en en en en e					

1		·			
					· · · · · · · · · · · · · · · · · · ·
war.		 			
		· 			
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
				· .	
· · · · · · · · · · · · · · · · · · ·					

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-3-C

Project # 06720-020-002-0109

Lab ID: 9605G320-013 Sample Date: 05/17/96 Date Received: 05/21/96

			•				
	Param	eters	:	Result	Units	Reporting Limit	
	% So1	ids		85.5	*	0.10	
	Lead,	Total		346	mg/kg	1.4	
			e en en en en en en en en en en en en en				
i						•	
				,			
			·				
		N. T.					
			, 				
				· · · · · · · · · · · · · · · · · · ·			
			• # 5				

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-2-C

Project # 06720-020-002-0109 Lab ID: **9605G320-014** Sample Date: 05/17/96 Date Received: 05/21/96

Parameters	Result	Units	Reporting Limit
% Solids	67.7	*	0.10
Lead, Total	182	mg/kg	2.3
			···
,			

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182 Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-5-C

Project # 06720-020-002-0109 Lab ID: **9605G320-015** Sample Date: 05/17/96 Date Received: 05/21/96

		Parame % Soli	···········		Result 90.8	Units %	Reporting Limit 0.10
		Lead,			9.4	mg/kg	1.4
1	Sept 1	·					
<u> </u>		······································	·	<u> </u>	·		

					•	·	
						· · · · · · · · · · · · · · · · · · ·	
						·	
·					<u>, </u>		
E 350		·.					
				•			

Weston Environmental Metrics, Inc. 2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **4-DEL-7**Project # 06720-020-002-0109
Lab ID: **9605G320-016**

Sample Date: 05/17/96 Date Received: 05/21/96

			•			
	Parameters		Result	Units	Reporting Limit	
	% Solids		84.6	*	0.10	
		. A. d				
			·.		•	
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: 4-DEL-8

Project # 06720-020-002-0109

Lab ID: 9605G320-017 Sample Date: 05/17/96 Date Received: 05/21/96

			bata nepo.	. •		
	Parameters		Result	Units	Reporting Limit	
	% Solids		85.5	*	0.10	
		a de la composição de l			Turker Walder	······································
					-	
	:				·	
•						
7 (1) 7 (2)	2.72					

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: HS4-PES-10C

Project # 06720-020-002-0109 Lab ID: **9605G320-018** Sample Date: 05/17/96 Date Received: 05/21/96

Pa	arameters	1	Result	Units	Reporting Limit	
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Solids		90.2	*	0.10	
. ·						
			·			
						·
		······································				
	· · · · · · · · · · · · · · · · · · ·					
						·.
			- MATERIAL			

Weston Environmental Metrics, Inc.
2417 Bond Street
University Park, Illinois 60466-3182
Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **HS4-PES-10B**

Fax: (708) 534-5211

Project # 06720-020-002-0109 Lab ID: **9605G320-019**

Lab ID: **9605G320-019**Sample Date: 05/17/96
Date Received: 05/21/96

Parameters	Result	Units	Reporting Limit
% Solids	84.2	*	0.10
· · · · · · · · · · · · · · · · · · ·			
 A			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: 4-DEL-9

Project # 06720-020-002-0109 Lab ID: **9605G320-020** Sample Date: 05/17/96 Date Received: 05/21/96

Parameters		Result	Units	Reporting Limit
% Solids		86.5	*	0.10
	- 1			
	;		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	7. ¥			
	B and the street of the street	t to the same of t		

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182 Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **4-DEL-6**

Project # 06720-020-002-0109 Lab ID: **9605G320-021** Sample Date: 05/17/96 Date Received: 05/21/96

Parameters	n F	Result	Units	Reporting Limit
% Solids		86.9	*	0.10
				•
	······································			
				÷
18.				

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: **4-DEL-5**Project # 06720-020-002-0109
Lab ID: **9605G320-022** Sample Date: 05/17/96 Date Received: 05/21/96

Parameters	Result	Units	Reporting Limit
% Solids	87.8	*	0.10
		*	
	1.		
	· · · · · · · · · · · · · · · · · · ·		
			•

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: FB-07S

Project # 06720-020-002-0109

Lab ID: **9605G320-023** Sample Date: 05/17/96 Date Received: 05/21/96

	and game and hoper of							
	Parameters		Result		Units	Reporting Limit		
	Lead, Total		19.5	u	ug/L	19.5		
		,						
2 (4) 28 (27)		·			· · · · · · · · · · · · · · · · · · ·			
1						•		
,		:						
· · · · · · · · · · · · · · · · · · ·								
······································			-					

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday May 28th, 1996

RE: 4-DEL-2

Project # 06720-020-002-0109

Lab ID: **9605G319-001** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

Semivolatile Compound	Result	Reporting Limit	Flag
bis(2-Ethylhexyl)phthalate	E	390	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday May 28th, 1996

RE: 4-DEL-2

Project # 06720-020-002-0109 Lab ID: **9605G319-001 DL** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

Semivolatile Compound	Result	Reportin Limit	g Flag
bis(2-Ethylhexyl)phthalate	200000	16000	D
		-	
	· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·	
·			
88.48 - 1848 M. F. F. C.			
	•		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday May 28th, 1996

RE: 4-DEL-1

Project # 06720-020-002-0109 Lab ID: **9605G319-002** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

Semivolatile C	ompound	Result	Reporting Limit	Flag	
bis(2-Ethylhexyl)ph	thalate	E	370		
					• .
			•		
			3		
					· · · · · · · · · · · · · · · · · · ·
					

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday May 28th, 1996

RE: 4-DEL-1

Project # 06720-020-002-0109 Lab ID: **9605G319-002 DL** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

	Semivolatile Compound	Result	Reporting Limit	Flag
bis(2	-Ethylhexyl)phthalate	17000	1800	D
)			•	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday May 28th, 1996

RE: 4-DEL-4

Project # 06720-020-002-0109 Lab ID: 9605G319-003

Lab ID: **9605G319-003**Sample Date: 05/17/96
Date Received: 05/21/96

Units: ug/Kg

Semivolati:	le Compound	Result	Reporting Limit Fl	ag
bis(2-Ethylhexy)	1	E	380	
			· · · · · · · · · · · · · · · · · · ·	
	•			
		·		
				

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday May 28th, 1996

RE: 4-DEL-4

Project # 06720-020-002-0109 Lab ID: 9605G319-003 DL Sample Date: 05/17/96

Date Received: 05/21/96

Units: ug/Kg

	olatile Compound	Result	Reporting Limit Flag	
bis(2-Ethy	hexyl)phthalate	33000	3800 D	
			·	
			E MANAGEMENT	: •
	***************************************			· · · · · · · · · · · · · · · · · · ·
	<u> </u>			
	,****			
			·	
		-		
· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·			
			· ·	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday May 28th, 1996

RE: 4-DEL-14

Project # 06720-020-002-0109 Lab ID: **9605G319-004** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

	Semivolatile Compound,	Result	Reporting Limit	Flag
bi	s(2-Ethylhexyl)phthalate	E	380	
	j	,	•	
)			·	
_				
	4			
		<u> </u>	·	
	7			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday May 28th, 1996

RE: 4-DEL-14 Project # 06720-020-002-0109 Lab ID: 9605G319-004 DL Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

	Semivolatile Con	npound	Result	Reporting Limit	Flag		
bis	(2-Ethylhexyl)phtl	nalate	43000	3800	D		
	· · · · · · · · · · · · · · · · · · ·			······	·		
			•				· .
		·					
		1					
	49,47,						
	······································	•				. •	
			•				
						•	
			-		•		
	•	•				•	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday May 28th, 1996

RE: 4-DEL-3

Project # 06720-020-002-0109 Lab ID: **9605G319-005** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

Semivolatile Compound	Result	Reporting Limit Flag	•
bis(2-Ethylhexyl)phthalate	. E	380	
	·		
	·		
the state of the s			

Weston Environmental Metrics, Inc. 2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday May 28th, 1996

RE: 4-DEL-3

Project # 06720-020-002-0109 Lab ID: **9605G319-005 DL** Sample Date: 05/17/96 Date Received: 05/21/96

Units: ug/Kg

	Semivolatile Compo	und	Result	Reporting Limit	Flag		
bis	s(2-Ethylhexyl)phthal	ate	23000	1900	D	·	
		· · ·		,	,		
)	/						
							
							
		······································					
							
-							
		n .			· · · · · · · · · · · · · · · · · · ·		
					- · · · · · · · · · · · · · · · · · · ·		
	1 - 1 - 1						
			"				
					· ·	· · · · · · · · ·	
			-				

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-10-C Project # 06720-020-002-0109 Lab ID: 9605G339-001 Sample Date: 05/20/96 Date Received: 05/22/96

Parameters	Result	Units	Reporting Limit	
% Solids	85.2	*	0.10	
Lead, Total	911	mg/kg	2.0	
			· · · · · · · · · · · · · · · · · · ·	
	- 			

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-7-D

Project # 06720-020-002-0109 Lab ID: **9605G339-002**

Lab ID: **9605G339-002** Sample Date: 05/20/96 Date Received: 05/22/96

Parameters	Result	Units	Reporting Limit
% Solids	88.4	*	0.10
Lead, Total	1550	mg/kg ု	1.5
			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-8-A

Project # 06720-020-002-0109 Lab ID: **9605G339-003**

Lab ID: **9605G339-003**Sample Date: 05/20/96
Date Received: 05/22/96

Parameters		Result	Units	F	Reporting Limit
% Solids		88.9	*		0.10
Lead, Total	277 92 4	2630	mg/kg		2.2
		*		13 c. w	
	1 4 -			and the second s	er de la companya de la companya de la companya de la companya de la companya de la companya de la companya de
	* · ·				
	P **				. :
			* * * * * * * * * * * * * * * * * * *		
			. ,		
	6 20 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· · · · · · · · · · · · · · · · · · ·		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-8-C

Project # 06720-020-002-0109 Lab ID: **9605G339-004**

Sample Date: 05/20/96 Date Received: 05/22/96

Parameters	Result	Units	Reporting Limit
% Solids	86.1	*	0.10
Lead, Total	500	mg/kg	1.6
		-	

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-8-B

Project # 06720-020-002-0109 Lab ID: **9605G339-005**

Sample Date: 05/20/96 Date Received: 05/22/96

	Parameters	Result	Units	Reporting Limit
	% Solids	82.1	*	0.10
	Lead, Total	1150	mg/kg	1.9
		•		
•				
				
			······································	
	· · · · · · · · · · · · · · · · · · ·			
	1			
			-	·
		djeno o o o o o o o o o o o o o o o o o o 		·

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-10-A

Project # 06720-020-002-0109 Lab ID: **9605G339-006** Sample Date: 05/20/96 Date Received: 05/22/96

					• • •
Parameters		Result	Units	Reporting Limit	
% Solids		87.6	%	0.10	
Lead, Total		1790	mg/kg	2.1	
	10.00				
	li .		•		
<u> </u>					
		<u> </u>			
				, , , , , , , , , , , , , , , , , , , ,	
			-		

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-7-A

Project # 06720-020-002-0109 Lab ID: **9605G339-007** Sample Date: 05/20/96 Date Received: 05/22/96

		3	-	•
	Parameters	Result	Units	Reporting Limit
91 J	% Solids	85.5	*	0.10
	Lead, Total	2610	mg/kg	2.1
			,	
		· · · · · · · · · · · · · · · · · · ·		
		Ţ		
· · · · · · · · · · · · · · · · · ·	, p. 100,000 and p. 1			
		· .		
41. 24				

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter

Roy F. Weston, Incorporated 4th Floor, Raritan Center Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-10-B

Project # 06720-020-002-0109 Lab ID: **9605G339-008** Sample Date: 05/20/96 Date Received: 05/22/96

	arameters	Result	Units	Reporting Limit	
*	Solids	87.5	*	0.10	
Le	ead, Total	1890	mg/kg	1.9	
		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
		·			
		· · · · · · · · · · · · · · · · · · ·			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-10-D

Project # 06720-020-002-0109 Lab ID: **9605G339-009**

Sample Date: 05/20/96 Date Received: 05/22/96

Parameters	i j	Result	Units	Reporting Limit		
% Solids		90.4	*	0.10		
Lead, Tota	1]	871	mg/kg	1.5		
	,					
	· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·	4					
	· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·		· : · · · · · · · · · · · · · · · · ·			
				·		

Weston Environmental Metrics, Inc. 2417 Bond Street University Park, Illinois 60466-3182

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-9-A

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Project # 06720-020-002-0109 Lab ID: **9605G339-010** Sample Date: 05/20/96 Date Received: 05/22/96

	Parameters	Result	Units	Reporting Limit
	% Solids	79.9	*	0.10
	Lead, Total	2420	mg/kg	1.6
	-			
	· .			4 / 1
				
The state of the s		4		
<u> </u>	<u> </u>		-	***
-				
			 	
	 			

2417 Bond Street

University Park, Illinois 60466-3182

Phones: (708) 534-5200 (219) 885-7077 (815) 723-7533

Fax: (708) 534-5211

To: L.E. Carpenter
Roy F. Weston, Incorporated
4th Floor, Raritan Center
Edison, NJ 08837-3616

Attn: Ms. Laura Amend

Date: Tuesday June 11th, 1996

RE: C-9-C

Project # 06720-020-002-0109

Lab ID: **9605G339-011** Sample Date: 05/20/96 Date Received: 05/22/96

Parameters		Result	Units	Reporting Limit	
% Solids	1	87.9	*	0.10	
Lead, Total		233	mg/kg	1.7	
					
	· ; //				

APPENDIX D SOIL BORING LOGS

APPENDIX D-1 MONITORING WELL PILOT HOLE LOGS

Borehole Log

PROJECT **LECARPENTER**

SITE NAME : LE CARPENTER

BORING ID : MW-12R

0.0000 estimated NORTHING :

EASTING ELEVATION :

0.0000 estimated 0.000 estimated

TOTAL DEPTH

: 17.00

LOGGER

: HACKETT/BURNS

DRILLING COMPANY : SUMMIT DRILLING, INC. DRILLING RIG

: GUS PECH AIR RIG

DATE STARTED

: 05/07/96

DATE COMPLETED

: 05/07/96

		,			The second secon						
ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD		COMMENTS
-1 -			20	SAND, It SILT, It GRAVEL	DK BROWN	LSE	MST	5679	OVM 0.	.0	ASH-LIKE MATERIAL PRESENT
-2 -	- 2		15	SAND, It GRAVEL, It SILT	DARK BROWN	LSE	WET	9	OVM O.	.0	ASH-LIKE MATERIAL IS PRESENT.
-3 -	- 3							99 10 14			TOWN TO THE PROPERTY OF THE PR
-4 -	- 4		20	SAND, SM SILY, It GRAVEL,	DK BROWN	LSE	SAT	6787	OVM 0.	0	Groundwater encountered approximately 4 ft below grade. Pieces of brick are present and wood.
-5 -	- 5							7			are present and wood.
-6-	- 6		55	SAND, It GRAVEL, It SILT	DK BROWN	LSE	SAT	123416	OVM 0.	0	Pieces of wood are present.
-7	7	deposition of the control of the con		CLAY, SM SILT, It SAND	DARK GRAY	SFT	MST		OVM 0.		Pieces of mica present.
-8-	- 8		30	SAND, It GRAVEL, It SILT	DARK GREY	LSE	SAT	12 30 50 50	OVM 73	34.0	Product noted on soil.
-9 -	- 9										
-10 -	- 10			SAND, It SILT	GRAY	LSE	WET		OVM 0.	.0	Air rotary to 11 feet below grade.

PROJECT LECARPENTER

SITE NAME : LE CARPENTER

BORING ID : MW-12R

NORTHING 0.0000 estimated

0.0000 estimated EASTING ELEVATION : 0.000 estimated

TOTAL DEPTH : 17.00

: HACKETT/BURNS LOGGER

DRILLING COMPANY : SUMMIT DRILLING, INC.

DRILLING RIG

: GUS PECH AIR RIG

DATE STARTED

: 05/07/96

DATE COMPLETED : 05/07/96

		· · · · · · · · · · · · · · · · · · ·				r			T .	1	
ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	2	READING	COMMENTS
				SAND, It SILT	GRAY	LSE	WET		OVM 0.0	Air	rotary to 11 feet w grade.
-11 -	- 11	10,000 of 00,000	40	SAND, sm GRAVEL, lt SILT	Вгомп	LSE	SAT	13 10 10 7	OVM 319	O Drag meth No d Shee	er tube analysis for ylene chloride - etections. n noted.
-12 -	12	0.00 00 00 00 00 00 00 00 00 00 00 00 00									
-13 -	13	00.00.00.00.00.00.00.00.00.00.00.00.00.	10	GRAVEL	GREY	LSE	DRY	25 27 30 17	OVM 58.(PIEC RECO	E OF GRAVEL BLOCKS VERY
-14 -	-	0.00.00.00.00.00.00.00.00.00.00.00.00.0			·						
-15 -	-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25	SAND and GRAVEL, tr SILT	DK GREY	LSE	SAT	11 12 15 22	OVM 0.0		
-16 -	_	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
-17 -	-										
-18 ⁻											·
-19 -											
-20 -	20										÷

Borehole Log

PROJECT LECARPENTER

SITE NAME : LE CARPENTER

BORING ID : MW-26

NORTHING 0.0000 estimated

EASTING 0.0000 estimated ELEVATION : 0.000 estimated

TOTAL DEPTH

: 14.00

LOGGER : HACKETT/BURNS

DRILLING COMPANY : SUMMIT DRILLING

DRILLING RIG

: GUS PECH AIR RIG

DATE STARTED

: 05/07/96

DATE COMPLETED : 05/08/96

			≿		, i			=		=		
ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	READ ING	COMMENTS
		900	100	CLAY and GRAVEL	BLACK	STF	DRY		OVM	0.0	M	aterial is asphalt.
-1 -	- - 1 -		20	CLAY SM SILT, SM SAND, It GRAVEL, It ORGANIC	DK. GREY	LSE	MST	358 350 50	OVM	0.0	0	rganic-rich material ith trace mica present.
-2 -	- 2											
-3 -	- 3		20	CLAY SM SILT, SM SAND, It GRAVEL, It ORGANIC	DK GREY	ŇA	SAT	31 38 38	OVM	0.0	Gabo	roundwater encountered t approximately 3 feet elow grade. Material is rganic-rich,trace mica.
-4 -	- 4			·	·							
-5 -	- 5		60	CLAY, Sm SILT, Sm SAND, It GRAVEL	DK GREY	NA	MST	300	OVM			efusal encountered at 5. feet below grade.
-6-	6	00.00.00.00.00.00.00.00.00.00.00.00.00.		GRAVEL, tr SAND, tr SILT	GRAY	STF	SAT		OVM	0.0	b ei r	ttempt spoon at 6 feet elow grade, and ncounter refusal. Air otary to 9 feet.
-7-	- 7	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	75	SAND, SM GRAVEL, IT SILT	OLIVE/GRAY	LSE	SAT	4880 4800	OVM	0.0	R	efusal encountered at 8. feet below grade.
-8 -	- 8	00.00000000000000000000000000000000000	100	SAND and GRAVEL, It SILT	GRAY	LSE	SAT		оум	0.0	MSC	aterial drilled through. oil classified by uttings.
-9 -	9	0.00,00,00										
-10 -	10	Cardes Cardes			·							

PROJECT LECARPENTER

SITE NAME : LE CARPENTER

BORING ID : MW-26

NORTHING 0.0000 estimated

0.0000 estimated EASTING ELEVATION : 0.000 estimated

TOTAL DEPTH : 14.00

LOGGER : HACKETT/BURNS

DRILLING COMPANY : SUMMIT DRILLING

DRILLING RIG

: GUS PECH AIR RIG

DATE STARTED

: 05/07/96

DATE COMPLETED

: 05/08/96

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
1 -	· 11	20 50 50 50 50 50 50 50 50 50 50 50 50 50		SAND and GRAVEL, It SILT	GRAY	LSE	SAT		OVM 0.0	Material drilled through Soil classified by cuttings.
2	12	6.00 00 00 00 00 00 00 00 00 00 00 00 00	50	SAND, Sm GRAVEL, It SILT	GREEN/GRAY	LSE	SAT		OVM 0.0	Blow counts not recorded
; -	13	0.00,00,00,00 0.00,00,00,00								
	· · 14	00000000000000000000000000000000000000								
; 	· 15									
, +	· 16				,					·
, -	17									
3 +	· 18		ı							
,	· 19		ı							
,	- 20		,							

APPENDIX D-2 SOIL BORING LOGS - MW19 DELINEATION

: 15.00

TOTAL DEPTH

PROJECT LECARPENTER

SITE NAME : MW-19 DELINEATION

: BURNS/HACKETT LOGGER BORING ID : B-1-MW19 DRILLING COMPANY : SUMMIT DRILLING, INC.

: GUS PECH AIR RIG 0.0000 estimated DRILLING RIG NORTHING : 05/10/96 0.0000 estimated DATE STARTED EASTING

0.000 estimated DATE COMPLETED : 05/10/96 ELEVATION :

		 			·. ····	T			I		
ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	ĊOLOŘ	STRENGTH	MOTSTURE	BLOW COUNT	FIELD	INSTRUMENT	I
-	-		65	SAND, SM SILT, lt GRAVEL, lt ORGANIC	BROWN	LSE	MST	10 11 17 15	OVM	0.0	Soil sample B-1A and it's duplicate B-1C collected at 0.6 to 1.2 feet below grade.
-1 -	- 1	000000000000000000000000000000000000000		SAND and GRAVEL, It SILT	BROWN/BLACK	LSE	DRY	·	OVM	0.0	
-2 - -	- 2		50	SAND, SM GRAVEL, SM SILT	DARK BROWN	LSE	WET	20 20 50 0	OVM	0.0	Air rotary to 4 feet.
-3 f											
-4 -	- 4	ing (y	20	GRAVEL and ORGANIC, It SAND, tr SILT	BROWN	LSE	WET	50 00 0	OVM	0.0	Air rotary to 11 feet. Attempt split spoon samples at 4,7 and 9 feet below grade.
-6-	-6	200 0 (100)	100	SAND, sm GRAVEL, lt SILT	BROWN/GRAY	LSE	DRY		OVM	0.0	Soil classification based
-7-	-	00,000,000,000		on dividely to other	when you						Soil classification based on cuttings. Boulders en- countered throughout the o to 11 depth interval.
1	_	10 00 00 00 00 00 00 00 00 00 00 00 00 0								-	
-8 -	8	000,000,000,000,000,000,000,000,000,00									
-9 -	9	00,000,000,000									
-10 -	10	20.451 53	,								

PROJECT : LECARPENTER

SITE NAME : MW-19 DELINEATION

BORING ID : B-1-MW19

NORTHING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 0.000 estimated

TOTAL DEPTH : 15.00

LOGGER : BURNS/HACKETT

DRILLING COMPANY : SUMMIT DRILLING, INC.

DRILLING RIG

: GUS PECH AIR RIG

DATE STARTED : 05/10/96

DATE COMPLETED : 05/10/96

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
•	•	000,000,000,000,000,000,000,000,000,00		SAND, SM GRAVEL, Lt SILT	BROWN/GRAY	LSE	DRY		OVM	0.0	Soil classification based on cuttings, Boulders encountered throughout the o to il depth interval.
-11 -	- 11	6 00 00 00 00 00 00 00	15	SAND and GRAVEL, It SILT	GRAY/BROWN	LSE	DRY	50 50 0	OVM	0.0	Material is possible run down. Air rotary 15 approximately 15 feet. Boulders encountered.
-12 -	- 12 -	0,000,000,000,000,000,000,000,000,000,									
-13 -	- 13 -	0.00	100	Not Classified - Incomple te Data							Material drilled through.
-14 -	- 14										
-15 -	- 15				·						
-16 -	- 16					- - - -					
-17	- 17										
-18 -	18										
-19 -	19				·						
-20 -	20										

Borehole Log

NORTHING

PROJECT LECARPENTER

SITE NAME :

MW-19 DELINEATION

BORING ID : B-2-MW19 0.0000 estimated

0.0000 estimated EASTING ELEVATION : 0.000 estimated

TOTAL DEPTH

: 15.00

: BURNS/HACKETT LOGGER

DRILLING COMPANY : SUMMIT DRILLING, INC.

: GUS PECH AIR RIG

DRILLING RIG

DATE STARTED

: 05/10/96

DATE COMPLETED : 05/10/96

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	=	READING	COMMENTS
		00000000	100	SAND, SM GRAVEL, Lt SILT	GRAY/BROWN/TAN	LSE	DRY	5898	OVM	0.0		
-1 - -	- 1	00 00 00 00 00 00 00 0		·	·	!						
-2 -	- 2		85	SAND, SM GRAVEL, SM SILT	YEL BR/GRAY	LSE	DŔY	12 11 8 5	OVM	0.0		
-3 -	- 3			SAND, SM SILY, IT GRAVEL	RED BR/BR	LSE	DRY		OVM	0.0		Roots present.
-4 -	- 4		70	SAND SM SILT, LT GRAVEL, Tr ORGANIC	YEL BR/GRAY	LSE	DRY	62 120 40	OVM	1.0		Roots present. Sample B-2A collected from 4.7 to 5.3 feet below grade.
-5 -	- 5							40				
-6-	- 6		30	SAND, SM GRAVEL, SM SILT	YEL BR/TAN	LSE	WET	6679	OVM	0.0		
-7-	7				·			79				
-8 -	- 8		10	SAND, IT GRAVEL, IT SILT	YEL BR/BR	LSE	WET	17 23 50 0	OVM	0.0		
-9-	- 9 -											
-10 -	10		70	SAND, SM GRAVEL, Lt SILT	GRAY/TÁN	LSE	DRY	15 19 18 24	OVM	0.0		Sample B-2B collected at 9.8 to 10.3 feet below grade.

PROJECT LECARPENTER TOTAL DEPTH : 15.00

SITE NAME : MW-19 DELINEATION LOGGER : BURNS/HACKETT

BORING ID : B-2-MW19 DRILLING COMPANY : SUMMIT DRILLING, INC. NORTHING 0.0000 estimated DRILLING RIG : GUS PECH AIR RIG

0.0000 estimated DATE STARTED : 05/10/96 EASTING

0.000 estimated : 05/10/96 ELEVATION : DATE COMPLETED

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
-11 -	- 11	0.00 00 00 00 00 00 00 00 00 00 00 00 00		SAND, SM GRAVEL, It SILT	GRAY/TAN	LSE	DRY		OVM (0.0	Sample B-2B collected at 9.8 to 10.3 feet below grade.
-12 -	- 12	0 00 00 00 00 00 00 00 00 00 00 00 00 0	10	SAND and GRAVEL, It SILT	YEL BR	LSE	SAT	50	OVM 0) . 0	
-13 -	- 13	00, 100, 100, 100, 100, 100, 100, 100,						ŏ			
-14 -	- 14 -	60	100	Not Classified - Incomple te Data							Material drilled through.
-15 -	15						i				
-16	- 16 -										
-17 - - -18 -	-										
-19 -	-							,			
-20 -	- 20										

PROJECT : LECARPENTER TOTAL DEPTH : 14.00

SITE NAME : MW-19 DELINEATION LOGGER : BURNS/HACKETT

BORING ID : B-3-MW19 DRILLING COMPANY : SUMMIT DRILLING, INC.

NORTHING : 0.0000 estimated DRILLING RIG : GUS PECH AIR RIG

EASTING : 0.0000 estimated DATE STARTED : 05/10/96
ELEVATION : 0.000 estimated DATE COMPLETED : 05/10/96

ELEVATION	DEPTH	MATERIAL	X RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	READING	COMMENTS
_			80	SAND, SM SILT, Lt ORGANIC , tr gravel	BROWN	LSE	MST	17 5 17 6	OVM	0.0)	Topsoil.
-1 ·	1			SAND, It GRAVEL, It SILT	GRAY/BROWN	LSE	MST		OVM	0.0)	Ash-like material present Soil sample 8-3A collected from 1 to 1.4 feet below grade.
-2·	2			SAND, It GRAVEL, It SILT	GRAY	LSE	MST	8 10 10 14	OVM	0.0	1	No recovery. Classifica- tion extended.
-3 -	- 3											
-4 -	4	6,000 6,000 6,000 6,000 6,000	30	SAND and GRAVEL, It SILT	BROWN	LSE	WET	12 14 14 18	OVM	0.0	ı	Pieces of brick and cinders present.
-5 -	5	00000000000000000000000000000000000000										
-6 -	- 6	0 0 0 0 0 0 0 0 0 0	10	SAND, It GRAVEL, tr SILT	GRAY/BLACK	LSE	MST	734	OVM	0.0		Ash-like material present
-7-	- 7							2	-			
-8 -	- 8		60	SAND, IT GRAVEL, TO SILT	GRAY/BLACK	LSE	MST	.8	OVM	0.0	ı	Sample 8-38 collected at
				SILT SM CLAY, SM GRAVEL,	YEL BR/GRAY	SFT	MST	10 10 5	MVO	0.0	ı	Sample 8-38 collected at 8.3 to 8.7 feet below grade.
-9 - -	9			·	,							
-10 -	10		100	Not Classified - Incomple te Data	·							Material drilled through.

PROJECT : LECARPENTER

SITE NAME : MW-19 DELINEATION

BORING ID : B-3-MW19

NORTHING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 0.000 estimated

TOTAL DEPTH : 14.00

LOGGER : BURNS/HACKETT

DRILLING COMPANY : SUMMIT DRILLING, INC.

DRILLING RIG : GUS PECH AIR RIG

DATE STARTED : 05/10/96

DATE COMPLETED : 05/10/96

		T	ſ			<u> </u>	П			
ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Not Classified - Incomple te Data	. 1					Material drilled through.
-										
-11 -	r 11									
					,					
-12 -	12:									
-										
-13 -	- 13									
	•		ı							
-14	14									·
	-									
4-	45									
-15 -	15				:					
-	-									
-16	16									
-17	17									
	•									
-18 -	- 18				į .				:	
	10									·
1	• ,		1	,						
-19 -	19									
					,			ļ		
-20	- 20			·						
<u> </u>										

PROJECT : LECARPENTER TOTAL DEPTH : 15.00

SITE NAME : MW-19 DELINEATION LOGGER : BURNS/HACKETT

BORING ID : B-4-MW19 DRILLING COMPANY : SUMMIT DRILLING INC.

NORTHING : 0.0000 estimated DRILLING RIG : GUS PECH AIR RIG

EASTING: 0.0000 estimated DATE STARTED: 05/13/96
ELEVATION: 0.000 estimated DATE COMPLETED: 05/13/96

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	READING	COMMENTS
			100	SAND and SILT, tr GRAVEL	BROWN	LSE	MST	3	OVM	0.9		Roots present.
_	-			SAND, SM SILT, It GRAVEL	RED BR/YEL	LSE	DRY	12	OVM	0.9		·
-1 -	1	00 00 00 00 00 00 00 00 00 00 00 00 00		SAND, SM GRAVEL, It SILT	BLACK	LSE	DRY		OVM	0.9		Ash-like material present Sojl sample B-4A collected from 1.5 to 2 feet below grade.
-2 -	- 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70	SAND, SM GRAVEL, IT SILT	BLACK	LSE	DRY	14 15 17 23	OVM	0.9		Ash-like material present
-3 -	- 3	00,000,000,000,000,000,000,000,000,000	•	SAND, SM GRAVEL, It SILT	RED BR/YEL BR	LSE	WET		OVM	0.9		
-4 -	- 4	60000000000000000000000000000000000000	100	GRAVEL, SM SAND, IT SILT	YEL BR/GRAY	LSE	MST	12 12 34 35	OVM	0.0		Pieces of granite gneiss present.
-5 -	6	or or postory	15	GRAVEL, Sm SILT, Lt SAND,	YEL BR	SFT	LIET	50	ОУМ	0 0		Pinces of groval are
	•		,,	GRAVEL, SM SILY, It SAND,	TEL DA	37 1	WL.	2000		0.0		Pieces of gravel are present.
-7-	7											Ų
-8 - -	- 8	00.00 00 00 00.00 00 00	75	SAND, SM GRAVEL, († SILT	YEL BR/GRAY	LSE	WET	18 25 27 30	OVM	0.0		Groundwater encountered at approximately 9 feet below grade.sample B-48 collected at 8.5 to 9 ft.
-9-	9	00,000,000,00										
-10 -	10	0C#3,10	70	SAND, SM SILT	DARK GRÄY	LSE	SAT		OVM	248	.0	Strong odor is noted.

06/19/96

PROJECT LECARPENTER

SITE NAME : MW-19 DELINEATION

8-4-MW19 BORING ID : 0.0000 estimated NORTHING

0.0000 estimated EASTING ELEVATION : 0.000 estimated

TOTAL DEPTH

: 15.00

LOGGER : BURNS/HACKETT

DRILLING COMPANY : SUMMIT DRILLING INC. DRILLING RIG

: GUS PECH AIR RIG

DATE STARTED

: 05/13/96

DATE COMPLETED

: 05/13/96

ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
	[SAND, SM SILT	DARK GRAY	LSE	SAT		OVM 248.0	Strong odor is noted.
-11 -	- 11			SAND, It GRAVEL, It SILT	YEL BR	LSE	SAT		OVM 248.0	
-12 -	- 12		100	Not Classified - Incomple te Data						Readings of 338 units in breathing zone. Air rotary to 15 feet below grade.
-13 -	- 13									
-14 -	- 14									
-15 -	- 15									
-16 -	- 16 -									
-17 -	- 17									
-18 -	18									
-19 -	19									
-20 -	20							-		

PROJECT : LECARPENTER TOTAL DEPTH : 14.00

SITE NAME : MW-19 DELINEATION LOGGER : BURNS/HACKETT

BORING ID : B-5-MW19 DRILLING COMPANY : SUMMIT DRILLING INC.

NORTHING : 0.0000 estimated DRILLING RIG : GUS PECH AIR RIG

EASTING: 0.0000 estimated DATE STARTED: 05/13/96
ELEVATION: 0.000 estimated DATE COMPLETED: 05/13/96

		T		Τ	<u></u>	Ι	r	1	1		
ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			50	Not Classified - Incomple te Data	BLACK	STF	DRY	13	OVM	0.0	Material is asphalt.
	Ĺ			SAND, It GRAVEL, IT SILT	YEL BR/BR/RED	LSE	DRY	13 18 20 20	OVM	0.0	
-1 -	1										
-2 -	2			SAND, It GRAVEL, It SILT	YEL BR/BR/RED	LSE	DRY		OVM	0.0	No material recovered. Classification extended.
	•										ctassification extended.
-3 -	3										
	-										
-4 -	4	3805	30	SAND, SM GRAVEL, LT SILT	BROWN	LSE	DRY	11	OVM	0.0	Soil sample B-5A collect- ed from 4.1 to 4.4 feet below grade.
-5 -	- 5	0,000,000,000 0,000,000,000,000					DRY	14			below grade.
-	-	0.00 00.00 0.00 00.00									
-6 -	- 6		30	SAND, It GRAVEL, It SILT	BROWN	LSE	MST	16 24 21 33	OVM	0.0	Soil sample B-5B collected from 6.1 to 6.6 feet below grade.
-7 -	7										
	-										
-8-	8	0.000	100	SAND and GRAVEL, It SILT	GRAY/GRAY BR	LSE	SAT		OVM	0.0	Blow counts were not re- corded.
_		00									
-9 -	9	0.000.000	1								
-10 -	10	(0) 0 C	100	Not Classified - Incomple te Data							Material drilled through.
	Щ.	┸	l	<u> </u>	<u> </u>	L	1	Щ.	L		

PROJECT : LECARPENTER

SITE NAME : MW-19 DELINEATION

BORING ID : B-5-MW19

NORTHING : 0.0000 estimated

EASTING: 0.0000 estimated ELEVATION: 0.000 estimated

TOTAL DEPTH : 14.00

LOGGER : BURNS/HACKETT

DRILLING COMPANY : SUMMIT DRILLING INC.

DRILLING RIG : GUS PECH AIR RIG

DATE STARTED : 05/13/96

DATE COMPLETED : 05/13/96

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
	-			Not Classified - Incomple te Data						Material drilled through.
-11	- 11									
-12	- 12									
-13 -	13									
-14 -	- 14									
-15	- 15									
-16	16									
-17	- 17									
-18 -	- 18		ı							
-19 -	- 19									
-20 -	- 20		-							-

PROJECT : LECARPENTER

SITE NAME : MW-19 DELINEATION LOGGER : BURNS/HACKETT

BORING ID : B-6-MW19 DRILLING COMPANY : SUMMIT DRILLING, INC.

NORTHING : 0.0000 estimated DRILLING RIG : GUŚ PECH AIR RIG

TOTAL DEPTH

: 13.00

EASTING : 0.0000 estimated DATE STARTED : 05/09/96
ELEVATION : 0.000 estimated DATE COMPLETED : 05/09/96

ELEVATION	рертн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	READING	COMMENTS
-			80	SAND, SM SILT, tr GRAVEL, tr ORGANIC SAND, It SILT, tr GRAVEL	BROWN YEL BR	LSE	MST	I 20	OVM			Topsoil.
-1 ⁻	1		!	SILT SM SAND SM GRAVEL, It CLAY, It ORGANIC	DARK BROWN	LSE	MST		OVM	0.4	į	Sample B-6A collected at 1.1 to 1.5 feet below grade.
-2 -	2		30	SAND SM STLT, Lt CLAY, Lt GRAVEL, Lt ORGANIC	DK GRAY/BROWN	LSE	MST	18 50 0	OVM	0.0	l	Refusal at approximately feet. Air rotary to 4 feet.
-3 -	3	00,000	100	SAND, SM GRAVEL, It SILT	YEL BR/BR/GRAY	LSE	MST		ОУМ	0.0	1	Material drilled. Soil classified by cuttings.
-4 -	4	00 00 00 00 00 00 00	100	SAND, SM GRAVEL, Lt SILT	YEL BR/BR/GRAY	LSE	MST	40 53 41 50	OVM	0.0		
-5 -	- 5	0, 96 000 0,000,000,000,000,000,000,000,000,0		·	·							-
-6 -	6		30	GRAVEL, SM SILT, SM CLAY,	YEL BR	LSE	MST	10 7 12 12	OVM	0.0		Groundwater encountered at 6.4 feet below grade.
-7-	- 7											
-8 -	- 8		100	Not Classified - Incomple te Data								Material drilled through.
-9-	- 9				P							
-10 -	10											

PROJECT LECARPENTER

SITE NAME : MW-19 DELINEATION

BORING ID : B-6-MW19

NORTHING : 0.0000 estimated

EASTING 0.0000 estimated 0.000 estimated ELEVATION :

: 13.00 TOTAL DEPTH

: BURNS/HACKETT LOGGER

DRILLING COMPANY : SUMMIT DRILLING, INC.

DRILLING RIG

: GUS PECH AIR RIG

DATE STARTED

: 05/09/96

DATE COMPLETED : 05/09/96

		i -						_		
ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Not Classified - Incomple te Data						Material drilled through.
-11 -	- 11									
-12 -	- 12					·				
-13	- 13									
-14 -	- 14									
-15 -	- 15									
-16 -	16									
-17	17		:							
-18 -	- 18									
-19	- 19									
-20 -	- 20									

PROJECT : LECARPENTER TOTAL DEPTH : 12.00

SITE NAME : MW-19 DELINEATION LOGGER : BURNS/HACKETT

BORING ID : B-7-MW19 DRILLING COMPANY : SUMMIT DRILLING INC.

NORTHING : 0.0000 estimated DRILLING RIG : GUS PECH AIR ROTARY

EASTING: 0.0000 estimated DATE STARTED: 05/09/96
ELEVATION: 0.000 estimated DATE COMPLETED: 05/09/96

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	READING	COMMENTS
-1 -	- 1	000,000,000,000,000,000,000,000,000,00	100	SAND, SM GRAVEL, It SILT	YEL BR/BR	LSE	MST		OVM	0.0		Sample B-7A collected at 1.5 to 2 feet below grade
-2 -	- 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80	SAND, SM SILT, It GRAVEL	YEL BR/BR	LSE	MST	44370	OVM	0.0		Possible fill material.
-3 -	- 3							30				
-4 -	- 4		100	SAND, LT SILT	BROWN	LȘE	MST		OVM	0.0		Material drilled through. Boulder present (?). Classification extended.
-5 -	-5		65	SAND, SM GRAVEL, SM SILY	BR/YEL BR/GRAY	LSE	MST	31 31 19 16	OVM	0.0		Sample 8-78 collected at 5.9 to 6.3 feet below grade.
-6 -	6				į							
-7-	7		35	SAND IT GRAVEL, IT SILT, IT ORGANIC SILT, SM SAND, SM CLAY, IT ORGANIC	YEL BR	LSE	SAT	40	OVM OVM			Groundwater encountered at approximately 7 feet.
-8 -	- 8											
-9 -	9		100	Not Classified - Incomple te Data		LSE	SAT		OVM	0.0		Material drilled through.
-10 -	10											

PROJECT LECARPENTER

MW-19 DELINEATION SITE NAME :

B-7-MW19 BORING ID :

0.0000 estimated NORTHING

EASTING 0.0000 estimated 0.000 estimated ELEVATION :

TOTAL DEPTH : 12.00

LOGGER

: BURNS/HACKETT

DRILLING COMPANY : SUMMIT DRILLING INC. DRILLING RIG

: GUS PECH AIR ROTARY

DATE STARTED

: 05/09/96

DATE COMPLETED : 05/09/96

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT		COMMENTS
				Not Classified - Incomple te Data		LSE	SAT		OVM 0.0	Material drilled through.
-11 -	- 11									
-12 -	- 12 -									
-13 -	13	:								
-14 -	14							į		
-15	15									
-16	- 16				,					
-17	- 17									
-18	- 18				,					
-19 -	- 19									
-20 -	- 20									

PROJECT LECARPENTER

SITE NAME : MW-19 DELINEATION

BORING ID : B-8-MW19

0.0000 estimated NORTHING

0.0000 estimated EASTING ELEVATION : 0.000 estimated

TOTAL DEPTH : 6.00

LOGGER : BURNS/HACKETT

DRILLING COMPANY : SUMMIT DRILLING INC.

DRILLING RIG : GUS PECH AIR RIG

DATE STARTED : 05/09/96 DATE COMPLETED : 05/09/96

		1			T	T .	1	Ι	I	
ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
			90	SAND, It GRAVEL, It SILT	BR/YEL BR	LSE	DRY	19 20 22 23	OVM 0.0	Pieces of concrete present.
-1 -	- 1	0,000,000,000,000,000,000,000,000,000,		SAND, SM GRAVEL, Lt SILT	GRAY/BLACK	LSE	DRY		OVM 0.0	Pieces of glass present. Sample B-8A collected at 1 to 1.5 feet below grade
-2 -	2		55	SAND, SM GRAVEL, SM SILT	BR/BLACK	LSE	MST	43 37 19 19	OVM 0.0	Pieces of ash present. Sample 8-8B collected 2.3 to 2.7 feet below grade. at 2.7 feet below grade.
-3 -	- 3 -									
-4 -	- 4		15	SAND, It SILT, to GRAVEL	GRAY/GREEN	LSE	SAT	34 43 37 39	OVM 0.4	
-5 -	- 5									
-6 - _	6				*					
-7	7								,	
-8 -	8						:		·	
-9-	- 9									
-10 -	- 10									

BORING LOG ROY F. WESTON, INC.

Client: 42	Carpenter	Site: MW-19 Deline	Site: MW-19 Delinestion						
Boring No:	B-9	—— Work Assignment No:	Assignment No:						
Sample No:	B-9A	Time: 5/13/96 - 1125							
Sample No:	B711-9 (6	F. W.) Time: 5/13/96 - 1310	Time: 5/13/96 - 13/0						
Sample No:		Time:							
Equipment:	Split spor	20							
0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS						
	FILL	CONCRETE (Reinforced)							
	-	- JACK HAMMERED -							
		Intermixed Brown / Dark Brown / Reddish Brown c-m-f SAND, Some (+) Clayey silt, ext. Groundwater encountered at approximately 1.7 feet below grade. Sample B-9A collected at 1.2 to 1.7 feet below grade.							

APPENDIX D-3 SOIL BORING LOGS - HOT SPOT 1 DELINEATION

BORING LOG ROY F. WESTON, INC.

		Site: Hor Stor I	
Boring No:	31	—— Work Assignment No:	
		.1 6 8.6) Time: 1450 (5-13-96	
Sample No	: B1-2 (10	1.3 % 10.8) Time: 1504 (5-13-9)	6)
Sample No	•	Time:	
Equipment:	Ar Rotary	split spoon Samplers 10': 10'to 12'	
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
	FILL	Air rotainy to 5 feet below grade.	0-5'
2			
3			·
4			
5	2 1, 1	Stiff drilling resistance. Encounter	51-451
6	Boulder/ Concrete	boulder or concrete pad 5 to 7.5 ft. Cuttings at surface: Possible	
7		concrete.	
8	FILL	Air rotany to B feet below grade.	8-10'
	54	DK Brown c-m(+)-f SAUD little (+)	B.C =
9		m-f Grovel (angular), little silt; moist. Sample BI-I collected at 8.1 to 8.6 feet below grade.	7-15-50/1" OVM: O units
10		or 8.1 to 8.6 tear below grade.	Ric: 0.7'

BORING LOG ROY F. WESTON, INC.

Boring No: Sample No: Sample No: Sample No:	81	Site: Hot Spot 1 Work Assignment No: Time: Time: Split Sporn, Sampler	
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
12	SW	Br C-m(t)-f SMD, little (t) m-f Gravel, little Silt; saturated. Product encountwed at 10.3 to 10.8 feet below grade. Sample B1-2 collected at 10.3 to 10.8 feet below grade. Groundwater encountered at approximately 10 feet below grade.	10-12 B.C. NR OUM: 150 units Rec: NR

Client: LE-Carporter	Site: Har SPOT 1
Boring No: Bz4 Work As	ssignment No: (Replacement for B-2)
Sample No: <u>B24-1 (8.8-9.3)</u>	Time: 1419 (5/14/96)
Sample No: 824-2 (12.0-12.5)	Time: 1430 (5/14/96)
Sample No:	Time:
Equipment: Ar Atomy / sput Span S	

DEPTH (FT)	SOIL				DES	CRIPTK			REMARKS
o	CLASSIFICATION	40	Rotan	tu				grade.	0- 6 '
0.5	1		. 5,007	•-	•	rear	WELDW	grace.	5- 6
1.5									
2									
٤.5 .									
Z									
3.5									
4		-							
4.5									
5									

Client: LE Carpendar	Site: HOT SPOT I
Boring No: 8-24 Work As	signment No:
Sample No:	
Sample No:	
Sample No.	Time:
Equipment: Air Robon / Split Spoon .	Sampler

0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
5.5		·	
6	ML	Yel Br Clayey SILT, some (+) m-f	6'- 8' B.C.
6.5		Sand, little m-f Gravel (rounded); wet.	REC: 1.6°
7			
7.5.			
ક			81-101 B.C.
4.5		(-) m(-) - Growel Crounded; moint. 9.Z+: Dark Groy/Br cc-)-m-f SAND, 1; He CD Sitt; wet Sample	REC: 2' OVM:0 unik
9	sw	82A-1 collected at 88 to 9.3 fect below grade. Sample above	
9.5	·	the water table.	
10		Air Rotary to 10.5	

Client: LE-Gupenter	Site: Kot SPOT 1
Boring No: 824 Work As	
Sample No:	Time:
Sample No:	Time:
Sample No:	
Equipment: Air Robery / Split Spoon	Sumpler

0EPTH (FT)	SOIL CLASSIFICATION	DÉSCRIPTION	REMARKS
		Air Rutary to 10.5 feet	
10.5	m	10.5 - 11.3 Yel Br Clayer 5107 some	10.5' to 12.5' B.C.
- //	SW	C-m (t)-f SAND / He m-f Grovel, resisted Subwated	OVM: 100 miles
11.5		11.3 - Intermised Gray / Yel Br / Green C-MGO-f SAND, little f Gravel, little Silt; saturated.	REC: 2
12		Sample BZA-2 collected 12 to 12.5 feet below grade.	
12.5.			
/3		·	
			1

	_		······································
	E Carpenter		
Boring No:	B2	— Work Assignment No:	·
	_	69.1) Time: SAMPLES NOT FOR	WARDED
Sample No:	B2-2 (8	49.1-Dup) Time: "" "	
	B2-3 (11.5		• 1
Equipment:	Com 84	Split Spoon Sampler 10': 10' to 12': 12' to 14'	
	1 '	1 10 10 10 , 12 70 17	T
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
		1. Ph. + 9 C. 1. 1.	0-8'
		Air Rotary to 8 feet below grade.	-
3			-
.,		·	
4			
5		:	
6			Ì
			,
7		·	
88	لهی	VI A IC	8-10'
	<i>5₩</i>	Yel Br/Gray c-m-f(-) SAND, little c-m Gravel (subangular),	8.C: 16-18-16-14
9		little (+) Silt; wet Sample B2-1 and	oum. 2 units
		DC-2 colucted from 0 to 9.1 feet	REC: 1.1'
′^		below grade.	

Client: LE Carpenter	Site: Het SPOT (
	Work Assignment No:
Sample No:	
Sample No:	Time:
Sample No:	Time:
Equipment: Air Rotury / Solit	Spoon Surplers

DEPTH (FT) CLASSIFICATION DESCRIPTION DESCRIPTION REMARKS 10'-12' SP Top 1': It harmonized Yel Br & Dt Grey C-m(-) SAND, little (+) f. Gravel, trace Sitt; Saturated, Stained. Bottom 1': Yel Br C-m (-) SAND, little (+) f. Grovel, trace Sitt; Saturated. Sample Depth 12 to 14: Top 1.6': Yel Br C-m SAND, little f. Grovel (angular), trace Silt; Saturated. Bottom 0.4': Black C-m SAND, little f. Gravel (angular), little 5:1t; Saturated. Fraurolwater eacountered at approximately 10 feet below grade.		T		
Top 1': Intermixed Yel Br & De Gray C-m(-) SAND, little (+) f. Gravel, trace Sitt; saturated, stained. Bottom 1': 500 units Rec: 2' Sp Gravel, trace Sitt; saturated. Sample BZ-3 collected 11.5 to 12 feet below grade. 12' to 14' Dapth 12 to 14: Top 1.6': Yel Br c-rn SAND, little f. Gravel (angular), trace Silt; saturated. Bottom 0.4': Black c-m SAND, little f. Gravel (angular), 1:ttle f. Gravel (angular), 1:ttle f. Gravel (angular), 1:ttle Silt; saturated. Gravelwater excountered at approximately 10 feet below		CLASSIFICATION		ł .
	/3	5P 5P	Sit; saturated, stained. Bothm 1: Yel Br C-m (-) SAND, little (+) f. Gravel, trace Sit; saturated. Sample BZ-3 collected 11.5 to 12 fret below grad Dapth 12 to 14: Top 1.6': Yel Br C-m SAND, little f. Gravel (angular), trace Silt; saturated. Bottom 0.4': Black C-m SAND, little f. Gravel (angular), little Silt; saturated. Groundwater excountered at approximately 10 feet below	B.C. 31-26-30-29 OVM: 500 units Rec: 2' E. 12'to 14' B.C. 33-41-50-64 OVM: 98.9 units

Client:	Carpenter	Site: HOT SPOT I			
Boring No: 83 Work Assignment No:					
	Sample No: <u>63-1 (7 to 7.7)</u> Time: <u>1012 (5-14-96)</u>				
Sample No:	Sample No: <u>B3-2 (11.2 to 11.6)</u> Time: <u>1017 (5-14-96)</u>				
Sample No:		Time:			
Equipment:	Air Retary	1501:+ 5000 Samplers 9': 11' to 12'			
0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS		
		Air rotory to 7 feet below grade.	0-7'		
	·				
2					
4					
5					
<u> </u>					
7			7-9-		
	GP	Gray C-m(+) GRAVEZ, Some (+) c-m-f (-) Sand, little (+) Silt; damp.	B.C: 12-15-25-27		
8		Sample B3-1 collected 7.0 to 7.7	ovn: 3.2 units		
9			Rec: 0.7'		
		No Recovery.	B.C. 4-33-16-18		
10			14-33-16-18 OVAL: 0 REC: 0		

Client: 4	E Compenter	Site: Hot Spot 1	
Boring No:	33	Work Assignment No:	
Sample No:	•	Time:	•
Sample No:		Time:	
Sample No	•	Time:	,
Equipment:	Air Rotary	15plit Spoon Samplers	
0EPTH (FT) /o	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
12	5P -	Intermixed Yel Br /Lt. Gray c-m SAND, little f. Gravel (angular); little Sitt; wet to saturated. Sample B3-2 collected 11.2 to 11.6 feet below grade. Groundwater encountered at approximately 10 feet below Grade.	11' 10 12'- B.C: 31-60 Ovm: 600 units REC: 1'

Client: 4	Carpenter	Site: <u>Hot Spot /</u>	
Boring No:	34	Work Assignment No:	
Sample No:	B4-1 (6	-6.8) Time: 104 (5-14-9)	(a)
Sample No:	B4-2 (6	-6.8)- JuplicateTime: 1/04 (5-14-96	<u>a)</u>
Sample No:		Time:	
Equipment:	Air Retain / Socon 6'	to B'; B'to 10; 11'	
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
,		Air rotary to 6 feet	0-6'
		. ,	
3			
4	·		
5			
6			6-8
7	اله کی ا	Dk Brown c-m-f(-) SAND, some (-) C-m(t)-f Gravel (augular), little (+)	<u>p.c:</u> ovm: 3.2 anits
		S: 4. not Samole A-4-1 and Ado-2	Rec: 0.8 .
8			B'-10' BC: 33-50/1
9			oum: 0
/0			

Client: LE Corporter	Site: Hot Spot 1
Boring No: 84	
Sample No:	
Sample No:	Time:
Sample No:	Time:
Equipment: Aix Rotary / Spli	

0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
11		Stiff resistance noted during air rotary drilling. Attempt spoon, refusal.	BC: 100/0"
		-Borchole terminated at 11 feet due to material encountered.	
		•	

			·
Client: <u>LE</u>	Carpenter	Site: Hor SPOT 1	
Boring No:	35	Work Assignment No:	
Sample No:	B5-1 (8	10 8.5) Time: 1213 (5-14-96)	
Sample No:		Time:	
Sample No:	•	Time:	
Equipment:	Air 10 tary/ Spoon B' to	Split Spor Sampler	
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
		Air rotary to 6 feet.	0-6-
2			
3			
4			
_		4 .	
5			
6			11 00
2		Encounter stiff drilling resistance, Air rotany to 8 feet.	B.C B
			OVM: 2 units
8	-0/0		REC: 0.8
9	59/61	Red Br /BI C-M SAND and C-M	B <u>·- 10</u>
		GRAVEL (angular to subangular), 1:4/e Sitt; wet, botom 0.4 Saturated.	ovm: eunits
10		Sample B5-1 collected at B.o to	REC: 0.8'

8.5 fect below grade. Groundwater cocountered at approximately 8.4 feet below grade.

Client: LE Carpenke Site: Hot Spot 1 Boring No: B5 Work Assignment No: Sample No: Time: Sample No: Time: Equipment: Air Retary / Split Spoon Sample				
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS	
		Stiff drilling encountered. Terminate borchole at 10 feet below grade.		

Client: 4	Corpenser	Site: Her spor 1	
		—— Work Assignment No:	-
Sample No:	B6-1 (6.	3 - 6.8) Time: (240 (5-14-96)	· · · · · · · · · · · · · · · · · · ·
Sample No:	\$6-2 C8.	0 - 8,5) Time: 1245 (5-14-96)	
Sample No:		Time:	
Equipment:	Ais rotory / Span 6 to	Split Spoon Samples B': B' to 10';	
OEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
		Air rotany to 6 feet.	0-6
		Boulders noted on oidewall of borehole.	
2		or boremble.	
4			
5			
			. ·
	3 N	Intermixed Lt Gray/Red Br c-m(+) f SAND, little (+) Sitt, trace f.	B.C:
7		f SAND, little (+) S; It, trace f. Gravel (subangular); moist, roots	9-14-15-21 OVM: 2 units
	:	present. Sample B6-1 collected at	(SC: 0.8'
	SW 7	6.3 to 6.8 fret below grade. Intermixed Red Br/Br/Gray c-M(+)- f SAND , little Silt; wet . Bottom 0.1	6.C:
9		saturated. Sample BG-2 collected	oun: 2 wits
		at 8 to 8.5 feet below grade.	RE: 0.7'

- Goundwater encountered at approximately 8.6 feet below grade.

- Attempt sporm at 10 feet. Split spoon breaks down hole.

APPENDIX D-4 SOIL BORING LOGS - HOT SPOT 4 DELINEATION

		Site: Hot SOT 4 Dela	neation
		Work Assignment No:	····
		08(7-7.8) Time: 0805 (5-17-96)	
Sample No:	HS4-PES-	10c (9,5-10) Time: 0825 (5-12-96)	<u> </u>
Sample No:		Time:	
		/ Spirk Spoon sampler	
OEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
- 0		Air rotory to 5 Feet below grade.	
0.5		grade.	
1			
1.5			
2			
z.5			
3			
	,		•
3,5			
4 .			
٧.5			
		V	
_ 1		1	

Client: L.E. Carpente	Site: HOT SPOT 4 Delineative
Boring No: HS4-PES-10 Work As	signment No:
Sample No: HS4 - PES - 10B (7-7.9	
Sample No: HS4 - PES-10 c	•
Sample No:	
Equipment 1. D. 1. 5. C	

Equipment: 42 Robory / Special Separa Surplus

DEPTH (FT)	SOIL	DESCRIPTION	REMARKS
5.5 L	S	Greenish Gray com- FC-) SAND, Some m- f (ampular) Grand, 1:HIC (+) Si K; saturated.	8c. 8c. ovar
₹.ς	÷ 5₩	10 B collected at 7 to 7.8 feat	7' 9' BC: OM:
8 8.≤ 	۲.۶	to 9 feet. Encounder stiff resistance. (Rossible boulder).	
9,5		Greenish Gran do). m.f SAND, little (+) c-m (+) - f Granal (subsourned), little Clayer Silti saturated. Sample HSU-065-10 C collected at 9.5 to 10 feet below grade.	8.C. Rec: 1.4

		· · · · · · · · · · · · · · · · · · ·	
Client: L	. E. Curpent	Site: Hot Spot 4 De	lineation
		Work Assignment No:	
Sample No:	-	Time:	
Sample No:		Time:	
Equipment:	Air Btory	/ Split boon Sample.	
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
10.5			
	⊱ w	Greenish Gray com-f (3) SAND, 1:He (4) m-f Gravel (subramed) 1:He Sitt, saturated.	11-13' B.C.
(1.5		little Sitt, someath.	REC: 0.4
12			
12.5		! 	
3	< P	Greenish Grang c-m SAND,	13'+15'
13.5		little (+) in f Gravel (cuhoward)	
14			PEC: 1'
	=		
14,5			
15			

APPENDIX D-5 SOIL BORING LOGS - HOT SPOT B DELINEATION

Client:	L.E. Corperter	Site:	: HOT SAT B	
---------	----------------	-------	-------------	--

Boring No: <u>58 -1</u> Work Assignment No:

Sample No: 68-1-A (0-0.5) Time: 1470 (5-15-96)

Sample No: 58-1-6 (3-3.5) Time: 185 (5.15-96)

Sample No: <u>SB-1-C (4.545)</u> Time: 1925 (5-15-96)

Equipment: Arx retary, Solit Spion Sampler

0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
.5	SM (FILC)	Brown silty SAND, little Gravel; dry. Roots and ash- like material present. Sample SB-1-A collected at 0 to 0.5 feet.	0-2' B.C. esc: 1' ovm: o units
1.5			
2.0		Air rotary to 3 feet. Drilling resistance encountered.	
25		resistance encountered.	
3.	(PILO)	Brown SAND, some Clayey Silt, little Gravel; damp. Stag material	8'-5' <u>B.C</u> .
3.5		and ash present. Sample 5B-1-B collected at 3 to 3.5	esc:21 bym:0 units
4.5		feet below grade. Sample SB-1-C collected at 4.5 to 5.0 feet below grade.	
5			

Client:	LE. Conpenses		Site:	Hot	Spot	B
---------	---------------	--	-------	-----	------	---

Boring No: 56-2 Work Assignment No:

Sample No: SB-2-A (0 - 0.5) Time: 1355 (5-15-96)

Sample No: 58-2-8 (2-2.5) Time: 1405 (5-15-96)

Sample No: 56-2-0 (4-4.5) Time: 1410 (5-15-96)

Equipment: Air rotavy, Split Spon Samplers

DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
	3M	Brown C-M SAND, some Silt,	0-2'
0.5	(FILL)	little Gravel (angular); dry.	<u>8.C</u> :
	-{	Pieces of wood are present.	DVM: 0 units
	-	Sample SB-2-4 collected at 0 to 0.5 fect below grade.	REC: 2'
1.5			
2:0	-		
	5M	Brown am SAND, some Site,	2'-3'
2·5	(FILL)	little Gravel (angular); moist.	<u>B.C</u> :
3.0	ML (FILL)	Preces of ashlike material present. Sample SB-Z-B collected	oum: 0 units
		at 2 to 2.5 feet below grade.	
35]	Dork Brown Clayey SILT, Some (+) The f Sand; moist	3'-5' B.C:
	4	some (+) the + Sand; moist	_
4.	4	Puce of wood present.	oum: Ounits
.1	-	Sample SB-2-C collected at 4 to 4.5 feet below grade.	AEC: 2'
<u> </u>		at 4 to 4.5 text below grade.	
5.0			

Client:	L.E.	expenter		Site:	HOT SPOT	В
---------	------	----------	--	-------	----------	---

Boring No: 56-3 Work Assignment No:

Sample No: 58-3-A (0 to 0.5) Time: 1305 (5-15-96)

Sample No: 583-B (3 to 3.5) Time: 1307 (5-15-96)

Sample No: 58-3-0 (4 % 4.5) Time: 1307 (5-15-96)

Equipment: Air Rotary / Split Sporn Sampler

			
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
p.5	SM (FILL)	Brown C-M SAND, some Silt, little Gravel; dry, roots present. Sample SB-3-A collected at 0 to 0.5 fret below grade Air rotany to 2 feet.	O-Z' B.C. ovm: 0 units Rec: 1'
		Attempt spoon at 2', and accounter refusal. Air rotary to 3 feet.	
3.5 4			3'-5' B.C. ovm:0 unifs. REC:1.5'
5			

Client:	L.E. Carpenter	Site:	HOT SPOT B
---------	----------------	-------	------------

Boring No: SB-4 Work Assignment No:

Sample No: 58-4-4 (0 6 0.5) Time: 1245 (5-15-96)

Sample No: 56-4-8 (2 to 2.5) Time: 1253 (5-15-96)

Sample No: 58-4-0 (4 6 4.5) Time: 1255 (5-15-96)

Equipment: Air rotary, split spom Samples

	T		
0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
0.5 1	EP (FILL)	Brown c-m SAND, little (+) Clayey Sit, trace f. Gravel (angular); roots present, dry. Sample 56-4-A collected o to 0.5 feet below grade. Air Rotary to 2'.	B.C: OVM: RFC: 1'
2.0 2.5 3.0	(FILL)	clayer site, little f. stanct:	2'-3.5' B.C. SIN: Ownits REC: 1'
3.5 4.0 4.5	ML	Yel Br Clayey SILT, little m-f	4'-6' B.C. NBC: 0 units BE: 0.6'

Client:	L.E.	Carpenta	_ Site:	HOT	SPOT	B	
---------	------	----------	---------	-----	------	---	--

Boring No: SS-5 Work Assignment No: _____

Sample No: 58-5A (0,+0,3) Time: 0756 (5-16-96)

Sample No: 58-58 - Duplicate Time: 0956 (5-16-96)
58-50 (2-2.4)

Sample No: 8-50 (5-5.5) Time: 1034 (5-16-96)

Equipment: Air Robory / Sprit Spee Suplus

	[
0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
0.5	SM (FILE)	o-o. 1 Gray/roots. o.1- Dr Gray/Brown n-F SADD, sene(-) Sitt, little m-f Gravel; moist. Sample 5B-5-A and its duplicate 5B-5-B collected from o.1 to 0.7 feat below Grade.	BEC: 0.8, DAMES O PHILIPS
2 2 3 3.5	5 W (FILC)	Intermixed Group I Black c-m (+)- f 54mD, little (+) m-f Growel, (subcommed), little 5; th; day. Somple 50-5-c collected from 2.0 to 2.4 fact below grade	8.C: ofm: 0 units REC: 0.4.
4.5	ŀ	Attempt space: vetucal. Atto retary to is feet (Possible cobble).	
5			-

Client: L	E. Corpent	Site: Hor SAT B	Site: Hot SAT B			
Boring No:	58-5	Work Assignment No:				
	•					
Sample No:						
Sample No	•	Time:				
Equipment:	Die Roton	/ split spon Somple				
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS			
5.5 6 6.6	CLASSIFICATION	Internity of De Brown / Grown	5'-2' B.C.			

Client:	LE (Corpender		Site:	HOT	SPOT	B
---------	------	-----------	--	-------	-----	------	---

Boring No: 56-6 Work Assignment No:

Sample No: 98-4-A (0.5-1) Time: 0830 (5-16-96)

Sample No: 58-6-8 (2-2.5) Time: 0835 (5-16-96)

Sample No: 58-6-C (4-4.3) Time: 0843 (5-16-96)

Equipment: Air Rotory, Split spom Samples

DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
	Asphalt	0-0.5 Asphalt.	B.e:
0.5	50	0.5 to 1.5 Dark Brown / Gray SAND,	04-28 - 55-20 DVM: 0 cn: H
,	CFILE)	Some Grave Q. Sample 58-6-A collected 0.5 to 1 foot below grade.	REC: + 78 Z
1.5	sm (FIU)	1.5 to Z: Reduish Brown Silty Street, little Gravel judry.	
2	SP	Yellow Brown SAND, 1741e SIH,	21-41
2.5	(FILL)	with preces of concrete. Sample 5B-6-8 collected 2 to	8.C. 16-22 - 19-27 oum 0 units
3		25 fect debow grade.	ex: 0.5'
3.5			
4	51	P Con My Con a subject	
	(FILL)	Brown SAND, little Gravel, little	4'-6' B.C. 86-50/3"
4.5	- /	Silt; dry. Somple SB-6-c collected 4 to 4.3' fret below Stade	Dan: Ownits
		, ,, , , , , , , , , , , , , , , , , , ,	REC: 0.3'
5			

Client:	LE Carpenter	Site:	Hest	Spot 1	B
		SILE.			

Boring No: SB-3 Work Assignment No:

Sample No: 58-7-4 (0.5-0.9) Time: 68+2 (5-16-96)

Sample No: SB-7-B (683-3.2)Time: 0810 (5-16-96)

Sample No: 58-7-C (3.2-3.5) Time: 0812 (5-16-96)

Equipment: Air Robon, Solit Spoon Sompleus

DEFTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
	3 W	Air votary to 0.5 feet	•
0.5	(FILL)	Dank Gray C-M(t)-f GAND, little	0.5-2'
	(FILE)	Sitt, some com-f Gravel (subangular); dry. Sample 5B-7-A collected 0.5 to 6.9 feet below grado	<u>OVM</u> : 0 unds REC: 0.4' B.C. 25-50/4"
1.5			
2		Resistance encountered. Air rotory	
2.5		to 3 feet below grade.	
პ.ი	SP (FNC)	Dark Brown, SOND, some Gravel	3-5'
3.5			EEC: 0.5'
4		SB-7-C collected at 3.2 to	<u>8.C:</u> 7-9-7-9
4.5		3.5 feet below grade	·
5	·		

Client:	LE Compender	Site:	HOT GROT B
---------	--------------	-------	------------

Boring No: 58-8 Work Assignment No: _____

Sample No: 58-8-4 (0-0.5) Time: 1017 (5-15-96)

Sample No: 56-8-8 (2-2.5) Time: 1074 (5-15-96)

Sample No: 58-8-C (2-2,5)-Dup Time: 1024 (5-15-96)

Equipment: Air rotary/Split sport samplers

0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
1.5	<i>ક</i> ₩	Dark Gray / Black c-m-f SAND, little (+) ml-f Gravel, little Sitt; damp. Sumple SB-B-A collected o to 0.5 fret below grade	FILL (0-2') b.c. ovm: 4 units Bec: 0.5'
2 25 3	SM	wet Samples 5B-B-B and its duplicate 5B-B-C collected at 2 to 2,5 feet below grade · Bottom	2'-4' B.C. BYM: 0 units BEC: 0.B'
3.5		0.3': Intumixed Br/Gray/Red Br M-f SAND, Some (+) Silt, little M-f Grovel (rounded); moist.	
4.5		Refusal, Move location one toot, All rotory to 4ft. then refusal. Move location, air rotory to 4ft then refusal. Advance hole to 7ft,	
5		alterest spring hole cause in al 4 ft.	

Client: L.E. Chapenter	Site:	Not Spot B	
------------------------	-------	------------	--

Boring No: 58-9 Work Assignment No: _____

Sample No: <u>58-9-A</u> Time: <u>1124</u>

Sample No: 5B-9-8 Time: 1136

Sample No: 58-9-C Time: 12/0

Equipment: Air rotary, solit Spoon Song ler

0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
2.0	SM (FILL)	Sind w/some sitt; clay is incontrol of 6.5; brownish woor; replaced, routs	0-2' b.C18-15-16-58
		et 8.5'; brownish ador; respect, 10:ts grand and grass is a present 58-4A collected at 6.0-as:	ONM: O UNITS
1.5			
2.0			
3.5		clare at which would a see	<u>2</u> -41
3.5	SM (FILL)	clayers of informe crowd - subbles children and On 14th send; bounn color, moist	BC Rec BVM: O UNITS
4.6	SM		4.0'-4.5'
4.5		in from above and boilders.	Record 8" OVM: DUNETS
5.0	·	Lyen unade to get enough recovery	

Dolling more over a 1' and done spoon from 4.0-4.5'. Script constant of clayer sith at 4.0'. brown, moist; grand on bottom of spoon from 4.3' - 4.5'

Client:	L.E. Compenter	Site:	Hot Soot A	3
---------	----------------	-------	------------	---

Boring No: <u>58-10</u> Work Assignment No: _____

Sample No: 58-10-A (0-0.5) Time: 1435 (5-15-96)

Sample No: 58-10-8 (3-3.5) Time: 1445 (5-15-96)

Sample No: 66-10-0 (4.5-5) Time: 1445 (5-15-96)

Equipment: Air rotary

DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
.5	sm (fill)	Brown Stall, some Silt, little f. Gravel; dry Pieces of concrete and ash material	B.G. oum:ounits
,			KEC: 1'
1.5			
z.≤		Resistance encountered during	
3	. حد	her votary drilling. Drill to 3 feet below grade.	
3.5	(FIU)	Grown 5170, some Silt, 1; He Graves; dry. Bost Sample 5B-10-B Collected 3 to 3.5 feet below grade.	3'-5' B.C. Rec: 2'
4		Bottom 1: Yellow Brown Clayery SIUT. Sample 5B-10-c collected	orm: 0 units
4.5		4.5 to 5 feet below grade.	
5		·	

Client:	L.E. Corpenson	Site:	HOT SPOT B
---------	----------------	-------	------------

Boring No: SG-15 Work Assignment No:

Sample No: 56 -15-4 (0.6-1) Time: 1055 (5-16-96)

Sample No: SB-15-3 (2.5-3) Time: 105 (5-16-96)

Sample No: 4-45 Time: (110 (5-16-96)

Equipment: Dr Rotory / South Sport Sample

			
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
1.5	SP (Fill)	Brown SAND, some Silt, trace clay, little convite. Sumper SB-15-A collected 0.6 to 1 Foot below grade. (Burath Topsoil).	0-2' 6.(. 01 m; 0 mily Rec: 2
2.53	5 9 4 (filit)	2-705: GRAVET. 25 SAND, Some Silly Clay. Somple 58-15-8 collected 2.5 to 3 feet below grade	2:41 B.C. OM:0 with OSE:1,21
4. 5	say	collected 4 to 4,5 ft	4'-6' BC. OUM: 0 units REC: 1.6'

Client:	L.E.	as pender	Site:	HOT	SPOT	В
---------	------	-----------	-------	-----	------	---

Boring No: 58-16 Work Assignment No: _____

Sample No: 58-16-A (0.2-0.6) Time: 0917 (5-16-96)

Sample No: <u>SB-1L-8 (3-3.5)</u> Time: <u>0835 (5-16-96)</u>

Sample No: 58-16-C (5-5.3) Time: 0936 (5-16-96)

Equipment: Air Retay Solit Sporn Sompler

			
0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
	SW	0-0.2' TOP SOIL with roots	0-21
0.5	(AU)	0.2 - 1.2' Dr. Gray / Black c-m(+)-f, SAND, little m-f Gravel (angular),	BC. NR oum: o units
	1	1: 41c Sik; dry. Pieces of brick are present. Sample 58-16-A	REC: 1.2'
		collected at 0.2 to 0.6 fret	
1.2		below grade	
		Excepter stiff drilling resistance. Air Retury to 3 feet	
2,5		Air Retary to Steet	
3	GBI/ML		
		Intermixed Dk Gray / Black / Yel Br C-M (+) - F GRANEL (angular), some (+)	3'-5' BC.18-29-33-
3.5		Clayer Site, little m-f Sand;	ovm: o units
4		moist Sample SB-16-B collected from 3 to 3.5 feet	Rec: 0.7 únite
	·	below grade	
4.5			
5			

Boring No: Sample No: Sample No: Sample No:	5B-16	Site: Work Assignment No: Time: Time: Time: Somples	
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
5.5	GP/ML	Intermited Brown / Bray on- I GRAVEL, some Clayer Silt, 1ith CO f. Smil; moith Sample SB-16-C collected 5 to 5.3 fret below grave	B.C. 5.7 100/3' 0100: 0.7 mi REC: 0.3'

APPENDIX D-6 SOIL BORING LOGS - HOT SPOT C DELINEATION

Client:	L.E. Corporter	Site:	Hor Spot C	
---------	----------------	-------	------------	--

Boring No: C-\ Work Assignment No: _____

Sample No: (-1-A (0-015) Time: 1050 (5-17-96)

Sample No: C-1-B (2.7-3.2) Time: 1117 (5-17-96)

Sample No: C-1-C (4-4.5) Time: 1125 (5-17-96)

Equipment: Lin Robert Spirit Spor Surper

DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
9.5	5° (F116)	Internated Yel Br/Brown/ Gray C-m SAND, some a-f Grand (subangular), 1:44e Silt, dry. Sample C-1-A	B.C: ere: 1' oum:
1,5		collected at 0 to 0.5 feet	
2.5	Se (Fius)	2-2.7: Conente 2.7->: Internitud Yet Br/Tom/ Dh Br m-f(-) SAND, 1:41/2 m(-)-f Gravel (= lag material	2-4' B.c: Pec: 1.7.
3.5		little (4) Si 1b. Sumpei c-1-B? collected at 2.7 to 3.2 feet below grade.	
4.5	SPCFILL	4-4.2: Blue Green c-m(+)-f GRAVEL (Subangular) 1:4 le c-m Sound, trace Site. 4.2 > Dk Brown (A)-m SANDY some m-f Gravel (Subangular)	4'-6' B.C. eec:1
		(inte Siltimont. Sample	ovm: 4.8 mi

C-1-C collected at 4 to 4.5 feet below grade.

					
Client: L.E. Corporte. Site: Hot SPOT C					
Boring No: Work Assignment No:					
_	:				
Sample No	•	Time:	Time:		
Sample No		Time:			
	Air cota				
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS		
5.5	1				
6	se (FILL)	6-6.1": Der Gray / Brown Olive Gray m-9 SAND, 15416			
	CL	c-m-f Growel Congular),	6'- B' B.C.		
6.5		little Sile,	Dec: 0.8		
7		6.1'-+: Greenish Gray CLAY & SILT, little c-m Sand	<u>ovm:</u> 1.2		
7.5		1:4/c m-f Grand Contrapty)			
8	Wr	B- B. 6'- Introded (Matter)	8'-9'		
8.5	sp	changey SILT, some (+) m- f (x)	B.c.		
		Gravel, little (4) c-m Saul; wet. 86 >: Interminal	REC: 0.8 DVM: 79 min		
9		Greensh Gray / Gray on (+)-f SAND, little on (-) - f Gravel L			
9.5		angular), 144e Silt; moist.			
		.5	1		

Client:	L.E. Company	Site:	HOT SROT C
---------	--------------	-------	------------

Boring No: ____ Work Assignment No: ____

Sample No: 6-2-4 (0-0.5) Time: 620 (5-15-96)

Sample No: C-2-B (2-2-S) Time: 1405 (5-15-96)

Sample No: C-2-C (4-4.5) Time: 1410 (5-15-96)

Equipment: Ar rotory, solt spon sonplers

	T		
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
1.5	Sw (FILC)	toternized Gray / Brown c-mcd f SAJD, some con c-m Gravel, little Silt; any. Press of brick and concrete our present. Sample C-2-A collected of 0 to 0.5 feet below grade	0-2' BC: BC:
2.5 2.5 3	SWO (FILE)	Donk Gray / Black c-m (+)-f SAND, little muf Gravel (subrounder little Sitt; dry. Sumple c-2-B collected 2 to 2.5 feet below brooks.	2-4' B.C. B.C.
4.5 5.5	su (Filis) ML	little (+) min f (+) Grand (angular), little Silt - 4.2 -> Yel Br Clargey SILT, little (+) m- f(-)	4'-6' B.C BEC: 0.6'

4 to 4.5 Feet below grade

Client:	L.E. Carpenter	Site:	HOT SPOT C
---------	----------------	-------	------------

Boring No: C-3 Work Assignment No: _____

Sample No: <u>C-3-4</u> (0-0.5) Time: <u>1305</u> (5-15.94)

Sample No: 6-3-6 (2.8-3.3) Time: (307 (5-15-96)

Sample No: C-3-C (4.2-4.6) Time: 1307 (5-15-96)

Equipment: Air rotory, spirt spon surpers

DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
0.5	SW (FILL)	Intermined Dk Brown / Brown CC->-m-f SAOD, little(A) Sitt little m-f(A) Gravel; motal. Pure of concerts present. Sample C-3-A suretre at 0 to 0.5 feet below yards.	0-21 B.c. B.c. OVM: 0 mab
2 2.5 3 3	SM (FILL)	2-2.3: Brick 2.3-2.8: Commente 2.8->: Intermined DL Br(Gray/Black m-f SAND, little m-f Grand (subsamed) Some (-) Silt; moist. Press of brick present. Somple 2-2-B salested 2.8 to 3.3 feet below	Bic. Bec: 1.3 feet ovm: o mit
4.5 55		Grade. 4-4.4: B. rox/concerts 4.4 ->: Intermed Yelbr/ Orange SICT & CLAT, 1: H/c C-F Gravels little m. Sand; motet. Sumple C-3-c collected 34.2 to 4.6 feet below grade	41-6' B.c: REC: 0.6' ovm: 0 unite

Client: LE	Carponter	Site: HOT SPOTC			
Boring No:	0-3	Work Assignment No:			
Sample No: Time:					
Sample No:		Time:			
Equipment:	Air cotony !	Sout spoon samples			
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS		
5.5					
		·			
<u> </u>	ML	Yel Br/Drame Brown Clayer SILT, little m-f Sand, little f. Gravel;	6'-8'		
6.5		little m-f Sand, little f. Growers; morst.	oum: 24 units REC: 0.3'		
ষ					
7.5					
8					

Client:	L.E.	Compander	Site:	HOT SP	3 TC

Boring No: <u>C-5</u> Work Assignment No: ____

Sample No: C-5-A (0-0.5) Time: 1250 (5-17-96)

Sample No: C-5-B (2.2-2.5) Time: 1255 (5-17-96)

Sample No: (-5-c (1-7.5) Time: 1370 (5-17-96)

Equipment: 10 ratory / Sout spoon sumple

0.5 1.5 2 2.5_		Intermined Br/De Gray (-m(+)-F SAND, some (-) ~-	0-2' B.C:
2.5		f(+) Gravel, little Silt, any - Sample C-S-A collected at 0 to 0.5 feet below grade.	over o make
3.5	CL/GP ML	GRAVEL Crounded), little m- f(+) Soul; most. 2.7 -> Dark Gray (Product Starred) Chayey SILT, little m(-)-	21-41 B.C: Dec: 25 with Dec: 0.81
4.5	ķ	F Some. Send C-5-B collected of C-5-B collected of C.2 to 2.5 feet below grade. No recovery. Air rotary to Frest below grade.	4-6' 8.0: ovm: Rec: 0'

Client: L.	E. Capate	Site: Hot SAT C						
Boring No:	Boring No: C-5 Work Assignment No:							
Sample No: Time:								
Sample No: Time:								
Sample No: Time:								
Equipment: Air rotomy / Split Soon Sompler								
0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS					
5.5								
3. 7								
6								
6.5								
7	50	Intermixed Black / Greenish	7'-9'					
		Intermixed Black / Greenish Gray c-m SAND, some m-f Gravel Campuler), 1744k Si 16;	B.C.					
7.5		Grand Cangular), little Sile; Saturated Sumply C-5- C collected	oum: 12 units REC: 0.6 units					
8		7 to 7.5 frest below grado.						
8.5								
9								
		·						
		·						

Client: L.	F. Corpense	Site:	Not spot c	
------------	-------------	-------	------------	--

Boring No: C-G Work Assignment No:

Sample No: C-4-A (0-0.5) Time: 1335 (5-17-96)

Sample No: C-6-B (2-2.5) Time: 1330 (5-17-96)

Sample No: C-6-C (4-4.5) Time: 1345 (5-17-96)

Equipment: Aux Raby / Spirt Som Somple

DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
as	SP (FILL)	Intermixed Lt. Gray/Brown m. f. SAND, little c-m Gravel (rounded), little Sittiday. Pulces of brick and cement present. Strong over noted. Sample C-6-A collected and O to 0.5 feet below grade.	0-2' B.C. Om: 25 units BK: 1.2'
2 2.5 3	5 w	Intermixed Dk Gray / Br m-f SAND, some (-) Silt, little co)m-f Grovel (subane ulan). Sompte C-6-B collected at 2 to 2.5 feet below grade.	2'-4' B.C. OVM: 361 units
3.5 4 4,5		Intermittee Dork Gray Brown Clause SIIT trace mica, organico	4'-6' B.c: am: REC:

Client:	L.E. Carpenter	Site:	HOT SPOT C
---------	----------------	-------	------------

Boring No: C-7 Work Assignment No:

Sample No: C-7-A (0-015) Time: 0820 (5-20-96)
C-7-B (2-3) Time: 0820 (5-20-96)

C-7-B (2-3) 0875 (5-20-96)
Sample No: C-7-C (Dwb) (2-3) Time: 0825 (5-20-96)

Sample No: C-7-D (4-4.5) Time: 0830 (5-20-96

Equipment: Air Rotary, Split spoon Sampler

DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
0.5	5P (FILC)	Dark Brown m. f SAND, Some c-m-f Gravel (engular)	0-2' B.C:
		little Stit, trace roots; dry. Somple C-7-A collected at 0 to 0.5 feet below grad	REC: 2
1.5		8	
2	SM (FILL)	T-2.3 Black m-f (+) SAD, Some Silt, trace m-f Growel, (Subangular).2.3 to 3.3:	8.C. 01m: 0 with
2.5		Brown m- fcm) SAND, little Silt, trace f. Growel Growned); dry. Sample	25C: 1.3'
3.5		C-7-B and its suplicus to 1120ted at C-7-C collected at 2 to 3 feet below grade.	
4	se (FIL)	7	4'- 6' B.c.
ય.૬		(-) f. Gravel; moist. Simple C-7-D at 4 to 4.5 Sut	oum: Ounity REC: 0.6'
5	,	below grade.	

Client:	L.F.	arpenter		Site:	401	SPOTC
---------	------	----------	--	-------	-----	-------

Boring No: C-B Work Assignment No:

Sample No: (-8-A (0-0,5) Time: 0950 (5-20-96)

Sample No: C-8-B (z-z.5) Time: 1005 (5-20-96)

Sample No: C-B-C (4-4.5) Time: 1008 C5-70-96)

Equipment: Ar Robert / Spiel Syon Sompen

		a land	7
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
	SM	Intermixed Dk Brown / Gray	0-2'
0,5	(FILE)	Intermixed Dk Brown / Groy m-f SADD, some Silt, 114ke m-f Gravel (Subonyulon); diry,	<u>इ</u> ट,
,		Pucin of bride present. Somple C-8-4 collected 0 to 05	er: 2 mit
		feet below grade.	
1.5		3.22	
2	5 \		76 111
	(F111)	DK Brown c-m (y-f stab), 1241e Ct) Silt, 1141e f. Gravel	2'-4' B.C.
2.5		(subangular); dry, Pièces of brick	60 Wr U
3		present. Somple C-8-B collectes at 2 to 2.5 feet below grade.	REC: 0.6 unit
		9	
3.5			
4	รผ	Brown c-m(+)-f 5400, (4416 (+)	4'-6'
	(FILU)	silt, little man & Gravel Contramples	B.C.
4.5		pièces of brick. Sample C-8-CV T collected at 4 to 4.5 feet below	ale. o wits
		Stock .	RE: 1.2
5			

Client: LE Corpense		Site:	HOT SPOTC
---------------------	--	-------	-----------

Boring No: 2-9 Work Assignment No:

Sample No: C-9-A (.2-0.6) Time: 0927 (5-20-96)

Sample No: C-9-B (2-2.5) Time: 0935 (5-20-9L)

Sample No: <u>C-9-C</u> (4.5-5) Time: <u>0939</u> (5-20-96)

Equipment: A Raton / Splid speam sompler

	T -		
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
	SM	Dark Brown c-m-f(-) SAND,	0-21
0.5	(FILL)	Some Sitt, some (-) c-m-f Gravel, moise Sample C-9-A collected	<u>B.c</u> ;
	ł		onui Ometi
	·	at 0.2 to 0.6 feet below grade	REC' 2'
1,5			
2	SM	De Brown EC-)-m-f 5AND, some	2-41
	(FILE)	Silt, little m-f Grand (subcounded)	<u>BC</u> .
2.5		Sample C-9-B collect 1 at 21	<u>ext</u> 0.5
		2.5 feet below grade.	enur, o
3		_	
3.6			
			4-6"
		The best Come / Block comes	هد:
			EEC - 71
4 <	(۱۱۱۲)	Conso Children and land Consol	
		C-Q-C calleded at 45 to 5 feet	
5			
3 3.5 4 4.5	SW (Fill)	Introduced Brown/Black c-m-f SAND, little Site, little c-m-f Gravel (subangular); moist. Smpl C-q-c collected at 45 to 5 feet below years	4'-6"

Client: 1	E. Carpeller	S	Site: .	HOT	6P0TC
Boring No:	C-10	Work Assig	gnmei	nt No:	

Sample No: C-10-A (0-1')
C-10-B (0-1')-200 Time: 0855 (5-

Sample No: C-10-C (3-3.5') Time: 0905 (5-20-96)

Sample No: C-10-D (4'- 4.5') Time: 0910 (5-20-96

Equipment: 1 Retary / 600t Spoon Surpes

			
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
0.5	54A (FILC)	Dark Brown / Black m-fc-) SAND, some (-) Silt, little c-m-f Gravel; dry. Pieces of brick and concrete present. Sample C-10-A	8.C. 8.C. 6.E.C. 1.B.
1.5		and it's duplicate c-10-B collected at 0-1 fed below grade. Encounter resistance. Air ratury to three feel.	
2.5	GENSW (FILL)	DK Brown c-m.f SAND, sittle Sitt, little (4) E-m-f	3'-5'
3 . 5		brick present. Somple C-10-C collected 3 to 3.5 feet below grade. Somple	B.C. REC:2' Olmi o mil
4.g 5		C-10-D'eslleded 4 to 4.5 feet below grades	

Client: .	L.E. Corporter	Site:	HOT SPOTC
-----------	----------------	-------	-----------

Boring No: ____ Work Assignment No: _____

Sample No: C-11-A (6-0.5) Time: 1345 (5-16-96)

Sample No: c-11-8 (2-2.4) Time: 1352 (5-16-96)

Sample No: C-11-C (4-4.5) Time: 1355 (5-16-96)

Equipment: Air rotony, sout soom sompen

DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
	500	Intermised Que 10 1	0-5,
0.5	(FILY)	Intermitted Brown / Gray ! Dark Gray c-m(+)-f SADD,	8.C.
		little (+) c-m- f Growel	oum:
		(onquear to rounded). Withle	85C: 1.2'
'		6) Silt Johny, Somper C-11-A	
		Somple whether o to 0.5	
1.5		fact below grade.	
	i i	liva.	
2	Su		
	CFILD	c-m-f(-) SAND, little c-m-t	2-4-
2.5	3. 3.9	Commence Comments	<u> </u>
		Granel (subrounded to	ouni
	\$ *	angular), little (+) Sift; duy.	
3		Sample C-11-B collected	PEC: 0.4
		2 to 2.4 feet below grade.	
3.5		-	
4	GP (FILE)	4 to 4. \ Black m-f some	4-6
	CL		B.C.
4.5		m-+ Sound, little (4) Sint;	Him O. also
1.2		Botom #041 to 45. Yet Br SILT &	Per : 0.5'
		CLAY, 1:41c (+) F. Sand, trace	
5		f. Grand, moist. Sumple C-11-e	

collected 4 to 4.5 feet below Stade

3.T.C

Boring No: Q-12 Work Assignment No: _____

Sample No: C-12-A (0.1 +0 0.4) Time: 1415 (5-16-96)

Sample No: 6-12-8 (2 to 2.5) Time: 1425 (5-16-96)

Sample No: C-12-C (4 + 4.5) Time: 1430 (5-16-96)

Equipment: Air Robon / Split Spon Surper

0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
0.5	Topsoil Sw (FILL)	Brown c-mca) -f SAND, 114k	0-2. B.C.
		(A) m. f Gravel (sechamulan), little (t) Silt; dry. Pieces of concrete and brish are present	REC: 0.5
1.5	۶w	Note: Top 0.1' is Topsoil). Somper C-12-A collected 0.1 to 0.6 feet below grade	
z.\$	(FILL)	International Braum / Et. Gray c-m (r) - f SAND, little (r)m-f Gravel (unpulse), trace (r) Sitt; dry. Press of concrete b	2:41 B.C.
3		hvile are prosent. Somper C-12-B collected at 2 to 2.5 Feet below grand.	<u>ec:</u> 0.8'
3.5			
4.5	GA (FILE)	c-m- \$ (-) Sand little Silt; day.	4'-6' B.C: oun:
5		Pure of concerts and soich one present. Surple C-12-C Collected at 4 to 4.5 feet below grade	REC: 0. 8"

Client: L.E. Carpende Site: HOT SPOT C
Boring No: C-13 Work Assignment No:
Sample No: (-13-A (0-0.5) Time: 1310 (5-16-96)
Sample No: (-13-6 (4-4.5) Time: 132605 (5-16-96)
Sample No: Time:
Equipment: Ar ratory / Sprit tons

DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
0.5	50 (FILL)	Internitived Dark Gray / Brown c-m(+)-f SADD, some com-f Grand (subrowned), (ittle (+)) Silt misist. Price of brick and concents present. Sumple C-13-A collected 0 to 0,5 flat below grade	0-2' BC. BC. OVM: 0
z.5		No recovery. Low rotory to 4 fact.	SEC: 0
<i>3</i> .5	Sw	Five and the same of the same	
4. s			B.C. DEC: 0.6' DEC: puchfunchio

APPENDIX D-7 SOIL BORING LOGS - PERCOLATION TESTS & TEST BORINGS

Client: LE Caupende: Boring No: Leve #4 Work Assignment No: Sample No: Sample No: Time: Sample No: Time: Sample No: Time: Equipment: Air Retary - 8" bit, 6" Pvc Screen (3.0' in length)				
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS	
		Thermixed Brown/Gray e(-)-m-f SAND, little (+) Silt, little (+) m-f Gravel (angular); damp, precess of brick present. (FKL) Note: Bricks limited to top 1.4 of soil column. Hole completed at 2.5 feet below grade. Lithology bused on cuttings and sidewalls.		

		Site: Percolation Test	-		
Boring No: Perc 45 Work Assignment No:					
Sample No:		Time:			
Sample No:		Time:			
Sample No:		Time:			
Equipment:	Air Rotary	8" bit, 6" Ave Screen (2.0" in length)			
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS		
	FILL	Dark Brown c-m-f(-) SAND,			
		little (1) Silt, little m(-) - f			
		Gravel (angular); damp, pieces of brick present, cobbles			
 1		7			
		·			
	†				
		·			
	j		•		
з					
	-	- Hole completed at 1.9 feet			
		below grade.			
		-Lithology based on cuttings and sidewalls.			
4	- <u> </u>	and sidewells.			

Sample No: Sample No: Sample No:		Site: Percolation Test Work Assignment No: Time: Time: Time: Time: 5" bit, 6" Pic Seveen (5.4' in length)	
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
	4	Intermixed Brown / Dork Brown C-m SAND, 1: Hle f Gravel, 1: Hle 5: It i dry, pieces of brick present (FILL) Hole completed at 3.4 feet below grade. Lithology based on cuttings.	

Boring No: Sample No: Sample No: Sample No:	<u>Perc</u> #7		
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
1	FAL	Dark Brown e-m-f(-) SAND, little m-f Gravel (rounded to subangular), little (+) Silt; dry. (FILL)	
3		- Hole completed at 1.8 feet below grade -Lithology based on cuttings.	

	Client: <u>Le</u>	Carpenter	Site: Percelation Test	
	Boring No:	Perc #8	Work Assignment No:	
			Time:	
	Sample No:		Time:	<u> </u>
			Time:	
			8"6:t, 6" Pre Screen (3.9' in length	
	DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
ļ		FILL	Dark Brown c-m-f SAND, little	
ŀ			m-f Gravel (sabangular), little	
			Silt, trace organics. (FILL)	
L	1			
L				
ŀ				
L	—_2 —_			
_				
_				
_	3		- Hole completed at 3.4 feet below grade	
_		<u>.</u>	Lithology based on cuttings and sidewall of borehole.	
_			Sidewall of borehole.	
		_		

Boring No: Sample No: Sample No: Sample No:		Site: Work Assignment No: Time: Time: Time: Time: Site:	
0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
1.5		Cittings consisted of brown C-M-F. sand, little m-f subangular grand, trace sitt, and trace grand -> large boilders present	
3.0	·		
3.5 4.0	. *	<u>.</u>	
4.5			

Boring No: Sample No: Sample No: Sample No:	Perc 9	Site: Work Assignment No: Time: Time: Time:	
DEPTH (FT) کہ ج	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
6.0		Cuttings consisted of brown c-M-F sand, little m-f sibancular gravel, trace sitt and trace gravel -> large builders present.	

Client: <u>L.</u>	F. Conpent	Site: Geology	
Boring No:	XB-1	—— Work Assignment No:	
Sample No:		Time:	
Sample No:		Time:	
Sample No:		Time:	
Equipment:	Air rotary	1 South Sporn Samplero.	
DEPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
	TEPSOIL	Top 0.2: Top Soil	0-2' B.C.
0.5	ML-	Bottom D.3: Intumixed Yel Br/Br Clayey SILT and N-F SAND, 1741c	orw; o mits
		m- + Gravel (subrounded), trace week.	Fa
•		trace nica.	
1.5			
			2-41
2	- ML	Internited Yelbr/Br	BL
1.5		Clayer SILT and m-f SMD. 17Hz m-t Gravel Cubeauded	O)41;0,1 ,
3	,	trace wood, trace who.	REC: 0.0 unit
	·		
3.5			
4	ML	Brown Clayer SILT, some (4)	41-61 B.C:
4.5	! 	Coulannew; mark	
1.3		sample of we like	<u>over</u> : o unify REC: 0.6'

Client: کے۔	E. Carpent	Site: Geology	
Boring No:	13 XB-1	Work Assignment No:	
		Time:	
Sample No:		Time:	
Sample No:		Time:	· · · · · · · · · · · · · · · · · · ·
Equipment:	Air rotang	/Speit Spoon Soup kers	
0EPTH (FT)	SOIL CLASSIFICATION	DESCRIPTION	REMARKS
5.5			
5.5			
۵	SM	Brown m. f SMOD, some Clayer	&-84 8.03
6. ۶		Silt, little c-m-f Gravel (subrounded);	BC:
		ખ્ય.	PEC 1.1
7	·	·	
<u></u>			
8		Internited Olive Green / Gray	-1 -1
			8'-10' 8.c:
<u> </u>		Clayer SILT, some (+) m-f(+) Sond, little (+) cm Gravel (subanjular) moist.	OVM: 150 with
9			
९5			i
10		· ·	

APPENDIX E MONITORING WELL CONSTRUCTION DETAILS

Borehole Location Data

BOREHOLE ID: MW-12R PROJECT NAME: LECARPENTER BEGIN DATE: 05/07/96 END DATE: 05/07/96

LOGGER/COMPANY : HACKETT/BURNS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 17.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 0.66

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : AIR ROTARY FLUID : NOT APPLICABLE

BOREHOLE DIAMETER #2: 0.25

INTERVAL: 15.00 ft. to 17.00 ft. BGS

METHOD: SPLIT SPOON FLUID: NOT APPLICABLE

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: SUMMIT DRILLING, INC.

DRILLER : CARMINE DECORSO
DRILL RIG TYPE : GUS PECH AIR RIG

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: Y PERMIT # :

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y) es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0
WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH

 PURGE:
 0.00

 SAMPLE:
 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N
SLUG TESTS.....(Y)es (N)o: N
PACKER TESTS.....(Y)es (N)o: N
PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

This monitoring well is a replacement well for MW-12S, which was removed during the soil "hot spot" excavation.

	ARPENTER CARPENTEI	2			ILLING FIRM SPECTOR	SUMMIT DRILLI BURNS/HACKETT		
WELL ID MW-1 START DATE 05/0 COMPLETION DATE 05/0	7/96			7	WATER LEVELS '.54 FT (TOC) ON			
Protective Casing	DEPTH 2.55	тс	ELEV. 2.55		DRILLING SUM	(MARY		
4.00 inch	0.00	GS	0.00	Drilling Fluid NO Well Type SI	T APPLICABLE NGLE CASED SCRE	ENED		
				Casing #1 Diameter Type		CONSTRUCTION Interval:	0.00 to	2.45 ft.
				Stick Up Inner Cas		. Protective	Casing:	0.00 ft. 0.50 ft.
				Seal Type: BENTONI	TE	Interval:	0.50 to	1.80 ft.
				Sand Pack Type: #2 Grain Size: Screen Diameter:		Interval: Median Diam Interval:		15.00 ft. 14.45 ft.
	0.50	DAI	-0.50	Type :		Slots: 0.02		14.45 16.
		BN	-0.50	Silt Trap Interval Backfill Type:	: 0.00 to	0.00 ft. Interval:	0.00 to	0.00 ft.
	1.80	SP	-1.80					
	2.45	sc	-2.45	Date: 05/15/95 Method: Pump & Sur Yield: 5 gpm		MENT ged Volume: 200	gal	
	14.45	BS	-14.45	TC = Top of Casing GS = Ground Surfac BN = Top Seal	· · · · · · · · · · · · · · · · · · ·	reen		Grout Seal Sand Pack
Ш	14.45	TD	-14.45	Additional Comment	TD = Total		=	
				Product noted	on discharge w	water. All dev back installed	-	

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

BOREHOLE ID: MW-26 PROJECT NAME: LECARPENTER BEGIN DATE: 05/07/96 END DATE: 05/08/96

LOGGER/COMPANY: HACKETT/BURNS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 14.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 0.66

INTERVAL: 0.00 ft. to 12.00 ft. BGS

METHOD : AIR ROTARY FLUID : NOT APPLICABLE

BOREHOLE DIAMETER #2: 0.25

INTERVAL: 12.00 ft. to 14.00 ft. BGS

METHOD: SPLIT SPOON FLUID: NOT APPLICABLE

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : SUMMIT DRILLING

DRILLER : CARMINE DECORSO/AQUINO

DRILL RIG TYPE : GUS PECH AIR RIG

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: Y PERMIT #:

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y) es (N) o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED..(Y) es (N) o: N TYPE DEPTH PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es $(N) \circ : N$ SLUG TESTS.....(Y) es $(N) \circ : N$

PACKER TESTS.....(Y) es (N) o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

	ARPENTER CARPENTER	1		DRILLING FIRM INSPECTOR	SUMMIT DRILL BURNS/HACKET		,
WELL ID MW- START DATE 05/ COMPLETION DATE 05/	08/96			WATER LEVEL 7.62 FT (TOC) 0			
Protective Casing	DEPTH 2.20	- 1	ELEV. 2.20	DRILLING SU Driller DECORSO/AQUINO Drilling Fluid NOT APPLICABLE	MMARY		
4 <u>00 in</u> ch	0.00	GS	0.00	Well Type SINGLE CASED SCR	EENED		•
				WELL DESIGN Casing #1 Diameter: 4.00 inch Type : PVC SCH 40	CONSTRUCTION	0.00 to	1.80 ft.
				Stick Up Inner Casing: 2.20 f Casing Grout: CEMT/BENT	t. Protective	Casing:	0.00 ft. 0.50 ft.
8				Seal Type: BENTONITE	Interval:	0.50 to	1.50 ft.
8				Sand Pack Type: #2 MORIE Grain Size:	Interval: Median Dia		13.00 ft.
8				Screen Diameter: 4.00 Type: PVC	Interval: Slots: .02		11.80 ft.
	0.50	BN	-0.50	Type . Pro	3101302	inches	
	1.50	SP	-1.50	Silt Trap Interval: 0.00 to Backfill∵Týpe:	0.00 ft. Interval:	0.00 to	0.00 ft.
				WELL DEVELO	PMENT		:
	1.80	sc	-1.80	Date: 05/14/96 Method: Pump & Surge/Overpump			•
				Yield: 6 gpm Pur	ged Volume: 20	gal	
				COMMENTS			
	11.80	BS	-11.80	TC = Top of Casing SP = Top S GS = Ground Surface SC = Top S BN = Top Seal BS = Botto	Screen	= 9	Seal
	11.80	TD OT	0.00	TD = Total		=	
				Additional Comments: A layer of #00 Morie sand i	installed from	1.5 to 1.8	feet

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

BOREHOLE ID: B-1-MW19 PROJECT NAME: LECARPENTER
BEGIN DATE: 05/10/96 END DATE: 05/10/96

LOGGER/COMPANY: BURNS/HACKETT

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 0.50

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD: AIR ROTARY FLUID: NOT APPLICABLE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: SUMMIT DRILLING, INC.

DRILLER : DECORSO

DRILL RIG TYPE : GUS PECH AIR RIG

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #:

HOLE ABANDONED...(Y) es (N) o: Y

WELL INSTALLED...(Y) es (N)0: Y

WELL CLUSTER....(Y) es (N)o: N No. OF WELLS: 0 WELL NEST.....(Y) es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH

 PURGE:
 0.00

 SAMPLE:
 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N SLUG TESTS......(Y) es (N) o: N PACKER TESTS.....(Y) es (N) o: N PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Temporary well installed for the collection of groundwater screening samples.

· =	ARPENTER 19 DELIN			DRILLING FIRM INSPECTOR	SUMMIT DRILL: BURNS/HACKET:	-	
	-MW19 10/96 10/96	WATER LEVELS 9.85 FT (TOC) ON 05/10/96					
	DEPTH 0.05		EV. 0.05	DRILLING SUMM Driller DECORSO Drilling Fluid NOT APPLICABLE	MARY		•
2.00 inch	0.00	GS	0.00	Well Type SINGLE CASED SCREE	ENED		
			-	WELL DESIGN (Casing #1 Diameter: 2.00 inch Type : PVC SCH 40		0.00 to	14.83 ft.
				Stick Up Inner Casing: 0.05 ft. Casing Grout: OTHER	Protective	Casing: 0.00 to	0.00 ft. 0.00 ft.
				Seal Type: NONE Sand Pack Type: NONE Grain Size: Screen Diameter: 2.00	Interval: Interval: Median Diam Interval:	9.83 to	0.00 ft. 0.00 ft. 14.83 ft.
0000	0.00	BN	0.00	Type : PVC	Slots: 0.02	inches	
	0.00	SP	0.00	Silt Trap Interval: 0.00 to Backfill Type: NATURAL	0.00 ft. Interval:	0.00 to	14.83 ft.
	9.83	sc -	9.83	WELL DEVELOPM Date: / / Method: Yield: Purge	ENT		
	14.83	BS -1	4.83	COMMENTS TC = Top of Casing SP = Top Sar GS = Ground Surface SC = Top Scr	nd Pack	=	Grout Seal
	14.83	<u> </u>	4.83	BN = Top Seal BS = Bottom TD = Total C	Screen		Sand Pack
	.,,,,,,			Additional Comments: Temporary well installed for screening samples.	the collection	on of groun	dwater

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

BOREHOLE ID: B-2-MW19 PROJECT NAME: LECARPENTER BEGIN DATE: 05/10/96 END DATE: 05/10/96

LOGGER/COMPANY: BURNS/HACKETT

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 0.50

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD: AIR ROTARY FLUID: NOT APPLICABLE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: SUMMIT DRILLING, INC.

DRILLER : CARMINE DECORSO
DRILL RIG TYPE : GUS PECH AIR RIG

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #:

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y) es (N) o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y) es (N) o: N TYPE DEPTH PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y) es (N) o: N SLUG TESTS.....(Y) es (N) o: N PACKER TESTS.....(Y) es (N) o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Temporary well installed for the collection of groundwater screening samples.

	ARPENTER 19 DELIN		DRILLING FIRM Inspector	SUMMIT DRILL				
	-NW19 10/96 10/96		WATER LEVELS 9.56 FT (TOC) ON 05/10/96					
	DEPTH 0.20	TC 0.20	DRILLING SU Driller DECORSO Drilling Fluid NOT APPLICABLE	JMMARY	, 1 72-1 1			
2.00 inch	0.00	GS 0.00	1	EENED				
				CONSTRUCTION				
			Casing #1 Diameter: 2.00 inch Type : PVC SCH 40	Interval:	0.00 to	10.00 ft.		
			Stick Up Timer Casing: 0.20 f	t. Protective	Casing:	0.00 ft.		
			Casing Grout: OTHER	Interval:	0.00 to	0.00 ft.		
88888			Seal Type: NONE	Interval:	0.00 to	0.00 ft.		
8888			Sand Pack Type: NONE Grain Size:	Interval: Median Diam	0.00 to	0.00 ft.		
			Screen Diameter: 2.00 Type: PVC	Interval: Slots: 0.02		15.00 ft.		
	0.00	BN 0.00			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	0.00	SP 0.00	Silt Trap Interval: 0.00 to Backfill Type: NATURAL	0.00 ft. Interval:	0.00 to	15.00 ft.		
			WELL DEVELO	PMENT				
	10.00	sc -10.00	Date: / / Method:					
			I .	ged Volume:				
			COMMENTS	,	· · · ⁷ - · · · · · · · ·			
	15.00	BS -15.00	TC = Top of Casing SP = Top S GS = Ground Surface SC = Top S BN = Top Seal BS = Botto	Gcreen om Screen	=	Seal Sand Pack		
	15.00	TD -15.00	TD = Total	Depth	=	Formation		
			Additional Comments: Temporary well installed fo	or the collection	on of groun	ndwater		

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

Borehole Location Data

BOREHOLE ID : B-3-MW19 PROJECT NAME: LECARPENTER END DATE : 05/10/96 BEGIN DATE : 05/10/96 LOGGER/COMPANY: BURNS/HACKETT BOREHOLE COMPLETED IN (<0>verburden edrock) : 0 DEPTH TO BEDROCK: 0.00 TOTAL DEPTH: 14.00 BOREHOLE DIAMETER #1: 0.50 0.00 ft. to 14.00 ft. BGS INTERVAL: AIR ROTARY FLUID : NOT APPLICABLE METHOD: BOREHOLE DIAMETER #2: INTERVAL: FLUID: METHOD: BOREHOLE DIAMETER #3: INTERVAL: METHOD: FLUID: DRILLING COMPANY: SUMMIT DRILLING, INC. DRILLER : DECORSO DRILL RIG TYPE : GUS PECH AIR RIG **ESTIMATED** SURVEYED SURFACE **ELEVATION:** 0.000 N. COORDINATE: 0.0000 0.0000 E. COORDINATE: WELL PERMIT.....(Y) es (N) o: N PERMIT # : HOLE ABANDONED...(Y) es (N) o: Y WELL INSTALLED...(Y)es (N)o: Y WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0 No. OF WELLS: 0 WELL NEST.....(Y) es (N) o: N PUMPS INSTALLED..(Y)es (N)o: N TYPEDEPTH PURGE : 0.00 0.00 SAMPLE : BOREHOLE TESTING BOREHOLE GEOPHYSICS.....(Y) es (N) o: N SLUG TESTS.....(Y) es (N) o: N PACKER TESTS.....(Y)es (N)o: N PUMPING TESTS.....(Y)es (N)o: N COMMENTS: Temporary well installed for the collection of groundwater

screening samples.

CLIENT SITE NAME	LECARPENTER MW-19 DELIN	EATION	DRILLING FIRM SUMMIT DRILLING, INC. INSPECTOR BURNS/HACKETT
WELL ID START DATE COMPLETION DATE	8-3-MW19 05/10/96 05/10/96		WATER LEVELS 8.37 FT (TOC) ON 05/10/96
	DEPTH 1.00	TC 1	V. DRILLING SUMMARY .00 Driller DECORSO Drilling Fluid NOT APPLICABLE
2.00 inch	0.00	GS 0	.00 Well Type SINGLE CASED SCREENED
			WELL DESIGN CONSTRUCTION
	0.00		Casing #1 Diameter: 2.00 inch Interval: 0.00 to 8.99 ft. Type : PVC SCH 40
	888888 888888		Stick Up Inner Casing: 1.00 ft. Protective Casing: 0.00 ft.
	***		Casing Grout: OTHER Interval: 0.00 to 0.00 ft.
	***		Seal Type: NONE Interval: 0.00 to 0.00 ft.
	***		Sand Pack Type: NONE Interval: 0.00 to 0.00 ft. Grain Size: Median Diameter:
	8	ĺ	Grain Size: Median Diameter: Screen Diameter: 2.00 Interval: 8.99 to 13.99 ft.
	*		Type: PVC Slots: 0.02 inches
	0.00	BN D.	Silt Trap Interval: 0.00 to 0.00 ft.
	0.00	SP 0.	Backfill Type: NATURAL Interval: 0.00 to 14.00 ft.
			WELL DEVELOPMENT
			Date: / /
	8.99	sc -8.	99 Method: Yield: Purged Volume:
			COMMENTS
	13.99	BS -13.	TC = Top of Casing SP = Top Sand Pack = Grout
	3. //	13	BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth = Formation
	13.99	TD -13.	,
			Additional Comments: Temporary well installed for the collection of groundwater

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

BOREHOLE ID: B-4-MW19 PROJECT NAME: LECARPENTER **BEGIN DATE** : 05/13/96 END DATE : 05/13/96

LOGGER/COMPANY: BURNS/HACKETT

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 0.50

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : AIR ROTARY FLUID : NOT APPLICABLE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: SUMMIT DRILLING INC.

DRILLER : DECORSO

DRILL RIG TYPE : GUS PECH AIR RIG

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT (Y) es (N) o: N PERMIT # :

HOLE ABANDONED ... (Y) es (N) o: Y

WELL INSTALLED...(Y) es (N) o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0 WELL NEST.....(Y) es (N) o: N No. OF WELLS: 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH

> PURGE: 0.00

> SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS..... (Y) es (N) o: N

COMMENTS:

Temporary well installed for the collection of groundwater screening samples.

CLIENT SITE NAME		ARPENTER 19 DELINE	EATION		* .	DRILLING FIRM INSPECTOR	SUMMIT DRILL BURNS/HACKET		
WELL ID START DATE COMPLETION DA	05/1	MW19 3/96 3/96				WATER LEVELS 8.80 FT (TOC) ON			
		DEPTH 0.36	тс	ELEV. 0.36	Driller Drilling Fluid	DRILLING SUM CARMINE DECORSO NOT APPLICABLE	IMARY		
2.00 in	ch	0.00	GS	0.00	Well Type	SINGLE CASED SCRE	ENED		
	200000000000000000000000000000000000000				. 4	WELL DESIGN	CONSTRUCTION		
					Casing #1 Diame Type	ter: 2.00 inch : PVC SCH 20	Interval:	0.00 to	9.64 ft.
	888888 8888888				Stick Up Inner	Casing: 0.36 ft	. Protective	Casing:	0.00 ft.
	888				Casing Grout: 0	THER	Interval:	0.00 to	0.00 ft.
	888				Seal Type: NONE		Interval:	0.00 to	0.00 ft.
	XXXXX				Sand Pack Type: Grain Size:	NONE	Interval: Median Dia	0.00 to	0.00 ft.
	88				Screen Diämeter		Interval:		14.64 ft.
	88	0.00	BN	0.00		: PVC	Slots: 0.0	20 inches	
		0.00	SP	0.00	Silt Trap Inter Backfill Type: (0.00 ft. Interval:	0.00 to	15. <u>0</u> 0 ft.
						WELL DEVELOP	MENT		,
		9.64	er	-9.64	Date: / / Method:				
	8	7.04	-	7.04	Yield:	Purg	ed Volume:		
	ě.					COMMENTS	·		
	****	14.64	BS	-14.64	TC = Top of Cas GS = Ground Sur BN = Top Seal	ing SP = Top Sa face SC = Top Sc BS = Bottom	reen	=	Grout Seal Sand Pack
	***	14.64	TD	0.00	represent	TD = Total		33333333 =	
					Additional Comm Temporary screening	well installes for	the collecti	on of groun	dwater

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

BOREHOLE ID: B-5-MW19 PROJECT NAME: LECARPENTER BEGIN DATE: 05/13/96 END DATE: 05/13/96

LOGGER/COMPANY : BURNS/HACKETT

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH : 14.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 0.50

INTERVAL: 0.00 ft. to 14.00 ft. BGS

METHOD : AIR ROTARY FLUID : NOT APPLICABLE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: SUMMIT DRILLING INC.

DRILLER : DECORSO

DRILL RIG TYPE : GUS PECH AIR RIG

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #:

HOLE ABANDONED...(Y) es (N) o: Y

WELL INSTALLED...(Y) es (N) o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0
WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y) es (N) o: N TYPE DEPTH PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y) es (N)o: N SLUG TESTS.....(Y) es (N)o: N PACKER TESTS.....(Y) es (N)o: N PUMPING TESTS.....(Y) es (N)o: N

COMMENTS:

Temporary well installed for the collection of groundwater screening samples. Borehole collapse at approximately 9 feet below grade due to the presence of boulders.

CLIENT SITE NAME	LECARPENTER MW-19 DELIN			RILLING FIRM NSPECTOR	SUMMIT DRILL BURNS/HACKET		
WELL ID START DATE COMPLETION DATE	B-5-MW19 05/13/96 05/13/96		7	WATER LEVELS 7.26 FT (TOC) ON		-	
	DEPTH 0.20	TC ELEV.	D Driller DE	DRILLING SUM CORSO T APPLICABLE	IMARY		
2.00 inch	0.00	GS 0.0	0 Well Type SI	NGLE CASED SCRE	ENED		
	00000000000000000000000000000000000000			WELL DESIGN	CONSTRUCTION		
	0.00		Casing #1 Diameter	: 2.00 inch : PVC SCH 20	Interval:	0.00 to	3.85 ft.
	88		Stick Up Inner Cas	ing: 0.20 ft	. Protective	Casing:	0.00 ft.
	***		Casing Grout: OTHE	:R	Interval:	0.00 to	0.00 ft.
	XX	. !	Seal Type: NONE		Interval:	0.00 to	0.00 ft.
	**		Sand Pack Type: NO Grain Size: Screen Diameter:		Interval:		0.00 ft. 8.85 ft.
	88		Type :		Interval: Slots: 0.02		0.05 Tt.
	0.00	BN 0.0) Silt Trap Interval	: 0.00 to	0.00 ft.		
	0.00	SP 0.0	Backfill Type: NAT	URAL	Interval:	0.00 to	10.00 ft.
	× ×			WELL DEVELOP	MENT		
	3.85	sc -3.8	1				
			Yield:	Purg	ed Volume:		
	8.85	BS -8.8	TC = Top of Casing GS = Ground Surfac BN = Top Seal	-	reen		Seal
	8.85	TD -9.0		TD = Total		********** =	
			Additional Comment	l installed for	the collection	on of groun	dwater

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

```
BOREHOLE ID :
              B-6-MW19
                                 PROJECT NAME: LECARPENTER
BEGIN DATE :
              05/09/96
                                 END DATE
                                          : 05/09/96
LOGGER/COMPANY: BURNS/HACKETT
BOREHOLE COMPLETED IN (<0>verburden <B>edrock): 0
TOTAL DEPTH: 13.00
                                 DEPTH TO BEDROCK: 0.00
                      0.50
BOREHOLE DIAMETER #1:
           INTERVAL: 0.00 ft. to 13.00 ft. BGS
           METHOD:
                      AIR ROTARY
                                            FLUID: NOT APPLICABLE
BOREHOLE DIAMETER #2:
           INTERVAL:
           METHOD:
                                            FLUID:
BOREHOLE DIAMETER #3:
           INTERVAL:
           METHOD:
                                            FLUID:
DRILLING COMPANY: SUMMIT DRILLING, INC.
DRILLER
               : DECORSO
DRILL RIG TYPE : GUS PECH AIR RIG
                       ESTIMATED
                                                SURVEYED
   SURFACE
   ELEVATION:
                   0.000
N. COORDINATE:
                   0.0000
E. COORDINATE:
                      0.0000
WELL PERMIT .....(Y) es (N) o: N PERMIT # :
HOLE ABANDONED...(Y) es (N) o: Y
WELL INSTALLED...(Y)es (N)o: Y
WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0
WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0
PUMPS INSTALLED..(Y)es (N)o: N
                                            TYPE
                                                            DEPTH
                                PURGE
                                                            0.00
                                SAMPLE :
                                                            0.00
BOREHOLE TESTING
  BOREHOLE GEOPHYSICS....(Y)es (N)o: N
  SLUG TESTS.....(Y) es (N) o: N
  PACKER TESTS.....(Y) es (\overline{N}) o: N
  PUMPING TESTS.....(Y)es (N)o: N
COMMENTS:
  Temporary well installed for the collection of groundwater
   screening samples.
```

CLIENT SITE NAME	LECARPENTER MW-19 DELIN		DRILLING FIRM SUMMIT DRI INSPECTOR BURNS/HACK	LLING, INC. ETT
WELL ID START DATE COMPLETION DATE	8-6-MW19 05/09/96 05/09/96		WATER LEVELS 10.40 FT (TOC) ON 05/09/96	
	DEPTH 2.70	TC ELE	DRILLING SUMMARY O Driller DECORSO Drilling Fluid NOT APPLICABLE	. * 444
2.00 inch	0.00	GS 0	00 Well Type SINGLE CASED SCREENED	
	0.00		WELL DESIGN CONSTRUCTION Casing #1 Diameter: 2.00 inch Interval Type : PVC SCH 20	,
			Stick Up Inner Casing: 2.70 ft. Protection Casing Grout: Interval	·
	88		Seal Type: NONE Interval	0.00 to 0.00 ft.
	*************************************		Sand Pack Type: NONE Interval: Grain Size: Median D Screen Diameter: 2.00 Interval:	
	₩ ₩ 0.00	BN O	Type: PVC Slots: 0.	.02 inches
	0.00	SP 0	Silt Trap Interval: 0.00 to 0.00 ft. Backfill Type: NATURAL Interval:	0.00 to 12.00 ft.
	5.30	sc -5		7,00
			Yield: Purged Volume:	1990
	10.30	BS -10	COMMENTS TC = Top of Casing SP = Top Sand Pack OGS = Ground Surface SC = Top Screen BN = Top Seal BS = Bottom Screen	= Grout = Seal = Sand Pack
	10.30	TD 0	TD = Total Depth	######################################
			Additional Comments: Temporary well installed for the collect screening samples.	ion of groundwater

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

BOREHOLE ID: B-7-MW19 PROJECT NAME: LECARPENTER BEGIN DATE: 05/09/96 END DATE: 05/09/96

LOGGER/COMPANY: BURNS/HACKETT

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 12.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 0.50

INTERVAL: 0.00 ft. to 12.00 ft. BGS

METHOD : AIR ROTARY FLUID : NOT APPLICABLE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: SUMMIT DRILLING INC.

DRILLER : DECORSO

DRILL RIG TYPE : GUS PECH AIR ROTARY

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT(Y) es (N) o: N PERMIT # :

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS : 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y) es (N) o: N SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y) es (N) o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Temporary well installed at location for the collection of groundwater screening sample.

CLIENT SITE NAME			DRILLING FIRM INSPECTOR	SUMMIT DRILLING, INC. BURNS/HACKETT	
WELL ID START DATE COMPLETION DATE	05/09/96		WATER LEVELS 10.66 FT (TOC) ON		
	DEPTH 2.60	ELEV. TC 2.60	DRILLING SUM Driller DECORSO Drilling Fluid NOT APPLICABLE	MARY	
2.00 inch	0.00	GS 0.00	Well Type SINGLE CASED SCRE	ENED	
	0.00		WELL DESIGN Casing #1 Diameter: 2.00 inch Type : PVC SCH 40		4.40 ft.
	**************************************		Stick Up Inner Casing: 2.60 ft Casing Grout:	. Protective Casing:	
	××××		Seal Type: NONE	Interval: 0.00 to	0.00 ft.
	*************************************		Sand Pack Type: NONE Grain Size: Screen Diameter: 2.00 Type: PVC		
	0.00	BN 0.00	Type: Pyc	Stots: 0.2 Miches	
	0.00	SP 0.00	Silt Trap Interval: 0.00 to Backfill Type: NATURAL		12.00 ft.
	4.40	sc -4.40	WELL DEVELOP Date: / / Method: Yield: Purg	MENT	
			COMMENTS		· · · · · · · · · · · · · · · · · · ·
	9.40	BS -9.40	TC = Top of Casing SP = Top Sa GS = Ground Surface SC = Top Sc BN = Top Seal BS = Bottom	reen =	Grout Seal Sand Pack
	9.40	TD -12.00	TD = Total Additional Comments:	Depth ####################################	Formation
			Temporary well installed for screening samples.	the collection of groun	ndwater

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT NAME: LECARPENTER BOREHOLE ID : B-8-MW19 END DATE BEGIN DATE : 05/09/96 : 05/09/96

LOGGER/COMPANY: BURNS/HACKETT

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 6.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 0.50

> 0.00 ft. to 6.00 ft. BGS INTERVAL:

METHOD: AIR ROTARY FLUID : NOT APPLICABLE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: SUMMIT DRILLING INC.

DRILLER : DECORSO

DRILL RIG TYPE : GUS PECH AIR RIG

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # :

HOLE ABANDONED...(Y) es (N) o: Y

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y) es (N) o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS: 0

PUMPS INSTALLED..(Y)es (N)o: N DEPTH TYPE PURGE : 0.00

SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es $(N) \circ : N$ SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Temporary well installed at location for the collection of groundwater screening sample.

CLIENT SITE NAME		ARPENTER 19 DELIN			DRILLING F Inspector	FIRM SUMMIT DRIL BURNS/HACKE		
WELL ID START DATE COMPLETION I	05/0	-MW19 09/96 09/96				R LEVELS (TOC) ON 05/09/96		
		DEPTH 1.23	1 1	LEV. 1.23	DRILL Driller DECORSO Drilling Fluid NOT APPLIC	ING SUMMARY		· · · · · · · · · · · · · · · · · · ·
2.00 i	nch	0.00	GS	0.00		ED SCREENED		
	000000000000000000000000000000000000000				WELL	DESIGN CONSTRUCTION		
					Casing #1 Diameter: 2.00 Type : PVC SC		0.00 to	0.77 ft.
	****				Stick Up Inner Casing:	1.23 ft. Protectiv	e Casing:	0.00 ft.
	***				Casing Grout:	Interval:	0.00 to	0.00 ft.
	***				Seal Type: NONE	Interval:	0.00 to	0.00 ft.
	XXXXXXX				Sand Pack Type: #2 MORIE Grain Size: UNIFORM	Interval: Median Di	ameter:	6.00 ft.
	88			ŀ	Screen Diameter: 2.00 Type: PVC	Interval: Slots: .0	0.97 to 2 inches	5.97 ft.
	<u>&</u>	0.00	BN	0.00	Silt Trap Interval: 0.0	0 to 0.00 ft.		
		0.00	SP	0.00	Backfill Type:	Interval:	0.00 to	0.00 ft.
	*					DEVELOPMENT		
	8	0.97	sc	-0.97	Date: / / Method:	Promond to 1		
	*			-	Yield:	Purged Volume:	 	
		5.97	BS	-5.97	GS = Ground Surface SC =	NTS Top Sand Pack Top Screen Bottom Screen	= :	Seal
	8	5.97	TD	-5.97		Total Depth	=	
					Additional Comments: Temporary well instal screening samples.	led for the collect	ion of groun	dwater

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

APPENDIX F

GROUNDWATER ELEVATION/PRODUCT THICKNESS DATA

TABLE 1 WATER LEVEL/PRODUCT THICKNESS MEASUREMENT DATA JUNE 13,1996 L.E. CARPENTER SITE WHARTON, NEW JERSEY

MONITORING POINT DESIGNATION	MEASURING POINT ELEVATION (FT, MSL)	PRODUCT (FT)	APPARENT PRODUCT THICKNESS (FT)	STATIC DEPTH TO WATER (PT)	CORRECTED DEPTH TO WATER (FT)	CORRECTED WATER LEVE
MW-1	639.18	ABANDONED			· · · · · · · · · · · · · · · · · · ·	ELEVATION (FT MEL)
MW-1(R)	NOT SURVEYED	9.27	ABANDONED	ADANDONED	ABANDONED	
MVV-2	633.57	ABANDONED	1.25	10.52	9.40	ABANDONED
MVV-2(R)	NOT SURVEYED		ABANDONED	ABANDONED		NOT SURVEYED
MW-3	632.56	NONE	NONE	6.60	ABANDONED	ABANDONED
MW-4	632.50	6.73	0.61	7.34	6.60	NOT SURVEYED
MW-5	632.42	NONE	NONE	6.61	6.78	625.78
MW-6	632.77	NONE	NONE	6.20	6.61	625.89
MVV-6(R)	NOT SURVEYED	ABANDONED	ABANDONED	ABANDONED	6.20	626.22
MW-7		SHEEN	SHEEN		ABANDONED	ABANDONED
MW-8	630.68 630.56	4.80	0.50	6.60	6.60	NOT SURVEYED
MW-9	631.69	NONE	NONE	5.30	4.87	625.81
MW-10		NONE	NONE	4.82	4.82	625.74
MVV-11S	631.52	SHEEN	SHEEN	5.80	5.80	625.69
MW-111	632.98	7.38	1.58	7.86	7.86	623.66
MW-11D	632.82	NONE	NONE	8.96	7.49	625.47
MW-12S	632.42	NONE	- NONE	7.05	7.05	625.77
MW-121	633.18	ABANDONED	ABANDONED	3.93	3.93	
MW-12R	633.06	ABANDONED	ABANDONED	ABANDONED	ABANDONED	628 49
MW-13S	NOT SURVEYED	NONE	NONE	ABANDONED	ABANDONED	ABANDONED
MW-13(R)	631.23	NONE	NONE	8.51	8.51	ABANDONED
MW-13(R)	NOT SURVEYED	NONE	NONE	5.38	5.36	NOT SURVEYED
MW-14S	630.66	NONE		5.14	5.14	625 85
MW-145	628,41	NONE	NONE	5.12	5.12	NOT SURVEYED
MW-14D	628.23	NONE	NONE NONE	3.40	3.40	625.54
MW-15S	628.53	NONE		2.86	2.86	625 01
MW-15i	636.77	NONE	NONE	ARTESIAN	ARTESIAN	625.37
MW-16S	636.66	NONE	NONE	10.72	10.72	ARTESIAN
MW-165	634.47	NONE	NONE	10 60	10.60	626.05
MW-175	634.98	NONE	NONE	8.03	8.03	626 06
MW-17D	634.79	NONE		8.34	8.34	626.44
MW-18S	634.86	NONE	NONE NONE	8.48	8.48	626.62
	631.26	NONE		7.45	7.45	626 31
MW-18i MW-18D	631.04	NONE	NONE	5.67	5.67	627.41
	630.77	NONE	NONE	5.17	5.17	625.59
MVV-19	638.88	NONE	NONE	2.96	2.96	625.87
MW-20	636.77	NONE	NONE	12.05		627.81
MW-21	628.80	NONE	NONE	8.78	12.05	626.83
MW-22	628.74	CASING	NONE	3.68	8.78	627 99
MW-23	630.64	NONE	IS	OBSTRUCTED	3.68	625.12
MW-24	629.03	CASING	NONE	3.37	0.00	628.74
MW-25	627.33	NONE	IS IS	OBSTRUCTED	3.37	627.27
MW-26	NOT SURVEYED	NONE	NONE	2.13	0.00	629.03
RW-1	637.38	11.0	NONE	7.65	2.13	625 20
RW-2	631,68	11.22	0.16	11.38	7.65	NOT SURVEYED
RW-3	631,99	6.2	0.01	6.21	11.24	626.14
CW-1	NOT SURVEYED	NONE	NONE	6.41	6.20	625.48
		8.50	0.01	8.51	6.41	625.58

TABLE 1 WATER LEVEL/PRODUCT THICKNESS MEASUREMENT DATA JUNE 13,1996 L.E. CARPENTER SITE WHARTON, NEW JERSEY

MONITORING POINT DESIGNATION	MEASURING POINT BLEVATION (FT. MOL)	DEPTH TO PRODUCT (FT)	APPARENT PRODUCT THICKNESS (FT)	STATIC DEPTH TO WATER (FT)	CORRECTED DEPTH TO WATER (FT)	CORRECTED WATER LEVE
CW-2	ABANDONED	ABANDONED	4044150		TO MICHAEL (FI)	ELEVATION (FT MOL)
CW-3	NOT SURVEYED	NONE	ABANDONED	ABANDONED	ABANDONED	Water and the same
GEI-11	630.78	NONE	NONE	7.91	7.91	NOT SURVEYED
GEI-2S	637,67	NONE	NONE	4.84	4.84	NOT SURVEYED
GEI-21	638.20	NONE	NONE	10.96	10.96	625.94
GEI-3i	639.85	NONE	NONE	10.88	10.88	626.71
WP-A1	635.81	0.58	NONE	12 99	12 99	627 32
WP-A2	BENT CASING	CASING	1.59	11.17	9.80	626 86
WP-A3	635.56	NONE	IS	OBSTRUCTED	BENT CASING	626.01
WP-A4	NO ACCESS	NO ACCESS	NONE	9.17	9.17	BENT CASING
WP-A5	637,85		NO ACCESS	NO ACCESS		626.39
WP-A6	637.28	11.08	NONE	12.19	NO ACCESS	NO ACCESS
WP-A7	634.88		3.74	14.82	12.19	625.66
WP-A8	637.56	8.93	0.21	9.14	11.30	625.98
WP-A9	639.45	11.53	3.00	14.53	8.94	625.94
WP-B1	633,65	13.25	0.02	13.27	11.71	625.85
WP-B2	632.25	NONE	NONE	6.41=	13.25	626.20
WP-83	633.33	NONE	NONE	6.45-	6.41	627.24
WP-B4	NEW STICKUP	5:85	1.29	7.14	6.45	625.80
WP-B5	632 11	6.67	1.82	8.49	7,14	626.19
WP-B6	631.86	NONE	NONE	6.56	6.83	NOT SURVEYED
WP-87	629.49	NONE	NONE	6.04	6.56	625.55
WP-88	629.29	4.25	0.28	4/53	6.04	625 82
WP-B9	ABANDONED	NONE	NONE	3.91	4.29	625 20
WP-810	NEW STICKUP	ABANDONED	ABANDONED	ABANDONED	3.91	625 38
WP-C1	NEW STICKUP	NONE	NONE		ABANDONED	ABANDONED
WP-C2	634.46	NONE	NONE	6.99 7.22	6.99	NOT SURVEYED
WP-C3	632.64	NONE	NONE		7.22	NOT SURVEYED
WP-C4	NEW STICKUP	NONE	NONE	8.21 7.37	8.21	626 25
DC-P0	625.73	NONE	NÔNE	7.37	7.37	625 27
DC-P1	625.26	NONE	NONE	074	7.37	NOT SURVEYED
DC-P2	626.79	NO ACCESS	NO ACCESS	NO ACCESS	0.74	624 99
DC-P3	625.22	NONE	NONE		NO ACCESS	NO ACCESS
DC-P4	625.10	NONE	NONE	2.43	2.43	624.36
DC-P5	625.16	NONE	NONE	2.20	2.20	623.02
RP-01	629.65	NO ACCESS	NO ACCESS	0.64	0.64	624 46
RP-02	627.75	NO ACCESS	NO ACCESS	NO ACCESS	NO ACCESS	
RP-03		NONE	NONE	3:10	3.10	NO ACCESS
RP-04	627.11	NONE	NONE	1.82	1.82	NO ACCESS
	NOT SURVEYED	NONE	NONE	2.64	2.64	625.93
TE:			140145	2.55	2.55	624.47 NOT SURVEYED

TIE:
WHERE SPECIFIC GRAVITY WAS NOT BE MEASURED, ASSUME A PRODUCT SPECIFIC GRAVITY OF 0.86.

APPENDIX G MONITORING WELL SAMPLING DATA FORMS

WAJNEN

Well No.: MW-4 Date: 6/14/96 Time: 1245
Boring Diameter: Well Casing Diameter:
Annular Space Length: Stickup: 3.64
COLUMN OF WATER IN WELL Casing Length (feet): DTW Top of Casing (feet): Column of Water in Well (feet): 7.19
VOLUME TO BE REMOVED Gallons per foot of casing: Column of water length (feet): Volume of casing (gallons): Number of volumes to be evacuated: Total volume to be evacuated (gallons):
Method of Purging (pump, bailer, etc.): Teflan Railer
FIELD ANALYSIS X3 gol. X6 gol. Start Mid End
Time pH Conductivity (nmHOS) mo/cm Temperature (celsius) PWAT Total Volume Purged: 1345 1351 1356 10.03 9.87 9.89 10.03 9.87 9.81 10.03 9.87 9.81 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.85 10.03 9.87 9.82 10.03 9.87 9.82 10.03 9.87 9.85 10.03 9.87 9.85 10.03 9.87 10.
Sample Time: 1300 Sample No.: MW-4
Parameters: <u>DEHP</u> , BTEX
Comments: A sheep is noted on the water
Signed/Sampler: Date: 07/01/96
Signed/Reviewer: Date:

WESTEN !

MONITORING WELL SAMPLING DATA FORM

Well No.: MW-14I Date:	06/14/96	Time:
Boring Diameter:	Well Casing Dian	neter:
Annular Space Length:	Stickup:	2.3 Steel
COLUMN OF WATER IN WELL Casing Length (feet): DTW Top of Casing (feet): Column of Water in Well (feet):	<u>43.51</u> <u>2.86</u> 40.65	
VOLUME TO BE REMOVED Gallons per foot of casing: Column of water length (feet): Volume of casing (gallons): Number of volumes to be evacuated: Total volume to be evacuated (gallons): Method of Purging (pump, bailer, etc.):	€ i	
Time pH Conductivity (nmHOS) mo/cm Temperature (celsius) pHATE Total Volume Purged: 36 Sample Time: 1143 Parameters: DEHP, BTEX	Start Mid 1105 1117 9.07 8.31 13.5°C 13.5 13.5°C 13.5 9.80 -051 9.80 gallons ML)-14	*36 gd. *36 gd. End 1133 8.43 8.30 .173 .13.4 13.3 8.44 -066 -063
Comments:		
Signed/Sampler:)	Date: 07/01/96
Signed/Reviewer:		Date:

M/HUBBARD/MONTWELL_FOR

WEJNEN

Well No.: MW-155 Date:	6/14/96	Time: 0315
Boring Diameter:6	Well Casing Diam	eter:4"
Annular Space Length:	Stickup:/, 9	4
COLUMN OF WATER IN WELL Casing Length (feet): DTW Top of Casing (feet): Column of Water in Well (feet):	19.51 10.72 8.79	
VOLUME TO BE REMOVED Gallons per foot of casing: Column of water length (feet): Volume of casing (gallons): Number of volumes to be evacuated: Total volume to be evacuated (gallons): Method of Purging (pump, bailer, etc.):	0.65 8.79 5.7 ×5 	
FIELD ANALYSIS	×10gel.	× 20 gd. × 30 ge.
pH Conductivity (nmHOS) ~ rrs/cm Temperature (celsius) pHATC	Start Mid 817 0832 5.81 7.38 122 a137 3.3 12.4 5.23 7.45 6.00 -018	End 0847 7.91 7.70 133 12.6 12.5 7.93 7.74 -015 -047
Sample Time: 0859 Sample Sample Time:	mple No.: MW-	155 + MW-30(Duplicate)
Parameters: <u>DEHP, BTEX</u>		
Comments: Water is initially a	ear when bailing	Commenced.
Water has a cloudy color Water is slightly cloudy and	after 10 gallons	is parcel.
Signed/Sampler:	-	Date: 07/01/84
Signed/Reviewer:		Date:

WEJNEN

Well No.: MU-15 I Date:	12-6-96	Time: <u>0905</u>
Boring Diameter: _~ 6''	Well Casing Dia	meter: <u>2</u> "
Annular Space Length:	Stickup:	2 Steel
DTW Top of Casing (feet):	39. <i>55</i> 10.60 18.95	
Column of water length (feet): Volume of casing (gallons): Number of volumes to be evacuated: Total volume to be evacuated (gallons):	0.167 28.95 4.3 × 5 24	· .
FIELD ANALYSIS	×10	×2 5 × 25
Time pH Conductivity (mnHOS) molern Temperature (celsius)	Start Mid 2986 0117 8.90 9.66 .188 .242 .3.3 13.4 3.31 9.66 .281 -286	End 0930 0937 9.77 9.60 .229 .212 13.6 13.5 9.59 -195 -195
	mple No.:	T
Parameters: <u>DEHP</u> , BTEX		
Comments:		
Signed/Sampler:		Date:07/01/94
Signed/Reviewer:		Date:

WESTER

	Date: 06/14/96	Tin	ne: <u>/33</u> 5
Boring Diameter: 8"	Well Ca	sing Diameter:	4"
Annular Space Length:	Stickup:	-	
COLUMN OF WATER IN WELL Casing Length (feet): DTW Top of Casing (feet): Column of Water in Well (feet):	15.26 8.48 6.78	- -	
VOLUME TO BE REMOVED Gallons per foot of casing: Column of water length (feet): Volume of casing (gallons): Number of volumes to be evacuate Total volume to be evacuated (gall		22	
Method of Purging (pump, bailer, e	etc.):		
Time pH Conductivity (nmHOS) ms/cm Temperature (celsius) pH ATC Total Volume Purged: 22	Start 1385 7.81 .208 13.0	Mid E 340 134 7-17 6. 195 .20 14.3 12 7.16 6.	5 gd. 22 gd End 18 1356 10 0.77 06 .132 12.3 72 6.72 09 012
Sample Time:	Sample No.:	nw-175	
Parameters: DEHP, BTEX	<u>. </u>		
Comments: Water is turbed turbed after 15 gallins	4	8 gallons; W	ete is still
			
Signed/Sampler:		Date	: 07/01/96
Signed/Reviewer:		Date	

WEJIEW

Well No.: MW-22 Date:	6/14/96	Time:
Boring Diameter:	Well Casing Diam	neter: _2"
Annular Space Length:	Stickup:	Stel
COLUMN OF WATER IN WELL Casing Length (feet): DTW Top of Casing (feet): Column of Water in Well (feet):	13.04 Unable to measure 13.04	
VOLUME TO BE REMOVED Gallons per foot of casing: Column of water length (feet): Volume of casing (gallons): Number of volumes to be evacuated: Total volume to be evacuated (gallons):	0.167 13 2.17 5	
Method of Purging (pump, bailer, etc.):	Well Wizard Pump	
Time pH Conductivity (nmHOS) Temperature (celsius)	Start Mid	End
Total Volume Purged:	gallons	
Sample Time:	Sample No.:	
Parameters:		
Comments: MW-22 was una the fact that the pump	be to be sampled	the well
Signed/Sampler:		Date: 07/01/96
Signed/Reviewer:		Date:

WAJNEN

Well No.: MV-25 Date:	6/14/96	Time: 1040
Boring Diameter: ~6"	Well Casing Diame	eter: 2"
Annular Space Length:	Stickup:	
COLUMN OF WATER IN WELL Casing Length (feet): DTW Top of Casing (feet): Column of Water in Well (feet):	12.00 2.13 9.87	
VOLUME TO BE REMOVED Gallons per foot of casing: Column of water length (feet): Volume of casing (gallons): Number of volumes to be evacuated: Total volume to be evacuated (gallons):		
Method of Purging (pump, bailer, etc.):	•	
Time pH Conductivity (nmHOS) mv/cm Temperature (celsius) pH AT Total Volume Purged:	Start Mid 1045 1157 9.84 10.00 .504 .007 13.8 12.9 9.82 10.00 gallons	End
Sample Time: 1200	Sample No.: <u>MW-25</u>	·
Parameters: DEHP, BTEX		
Comments:		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	
Signed/Sampler:		Date: 87/01/96
Signed/Reviewer:		Date:

Well No.: WP-A7 Date:	07/09/96	1	Time: 0900
Boring Diameter: #6"	Well C	asing Diamete	er: <u>2"</u>
Annular Space Length:	Stickup	<u> </u>	\
COLUMN OF WATER IN WELL Casing Length (feet): DTW Top of Casing (feet): (DTP - DTW) Column of Water in Well (feet):	13.65 9.60 - 11.48 2.17	<u>-</u>	• •
VOLUME TO BE REMOVED Gallons per foot of casing: Column of water length (feet): Volume of casing (gallons): Number of volumes to be evacuated: Total volume to be evacuated (gallons):	0.167 2.17 0.36 5	 	
Method of Purging (pump, bailer, etc.):	Peristaltic F	2 mp	
FIELD ANALYSIS	S 4	VC: 3	E-1
Time	Start	Mid ————————————————————————————————————	End
pH Conductivity (nmHOS) Temperature (celsius)			
Total Volume Purged: 2	gailons	• •	
Sample Time: <u>0935</u>	Sample No.:	WP-A7	
Parameters: Total & Disselved Lea	re l		
Comments: Peristaltic pump us	ed for 4	Le collection	in of "total"
and "dissolved" lead groun	ndwater .	sample;	
Signed/Sampler: B. B.			Date: 7/4/94
Signed/Reviewer:	The second second		Date:

Well No.: <u>ωρ- 49</u>	Date: 07/09/96	Time:	12 150B	0800
Boring Diameter:6"	Well Casing I	Diameter:	24	
Annular Space Length:	Stickup:	2 2.5'	X -	
COLUMN OF WATER IN WELL Casing Length (feet): DTW Top of Casing (feet): (mp-) Column of Water in Well (feet):	18.10		• •	
VOLUME TO BE REMOVED Gallons per foot of casing: Column of water length (feet): Volume of casing (gallons): Number of volumes to be evacuate Total volume to be evacuated (gal				
Method of Purging (pump, bailer,	ecc.): <u>Peristaltic Pu</u> mp			
FIELD ANALYSIS	Start Mid	Enc	i	
Time pH Conductivity (nmHOS) Temperature (celsius)				
Total Volume Purged: 3.5				
Sample Time: 0850	Sample No.: ωΡ-	19		
Parameters: Total & Dissolu	ed Lead			
Comments: Paristaltic pu	up wood for the co	llection of	"total	<u>r</u>
and "dissoluted" lead gra	oundwater samples			
Signed/Sampler: Z. Bur	ns	Date:	01/04R	6
Signed/Reviewer:		Date:	•	

Well No.: MW-12 P Date:	07/08/96 Time: 1333
Boring Diameter:	Well Casing Diameter: 4"
Annular Space Length:	Stickup: *3 feel
COLUMN OF WATER IN WELL Casing Length (feet): DTW Top of Casing (feet): Column of Water in Well (feet):	16.69 9,43 7.70
VOLUME TO BE REMOVED Gailons per foot of casing: Column of water length (feet): Volume of casing (gailons): Number of volumes to be evacuated: Total volume to be evacuated (gallons):	0.65 7,26 4.72 5
Method of Purging (pump, bailer, etc.):	BAILER
Time pH Conductivity (nmHOS) Temperature (celsius)	Start Mid End TUSTRUMENT MALFUNCTIONS
Total Volume Purged: 35	gallons
Sample Time: 1414	Sample No.: MW-12R and MW-31
Parameters: BTEX, DEHR	
Comments: Mw-31 is the de	plicate sample of MW-12R
1.)	
Signed/Sampler: But Bu	Date: 67/01/96
Signed/Reviewer:	Date:

Well No.: <u>MW-77</u> Date:	07/08/96	Time: <u>//30</u>
Boring Diameter: 26"	Well Casing Dia	meter: Z"
Annular Space Length:	Stickup: _*2'	`
COLUMN OF WATER IN WELL	13.0.4	* ·
Casing Length (feet): DTW Top of Casing (feet):	*	· to bend in casing
Column of Water in Well (feet):	13:04	to belief in casting
*		
VOLUME TO BE DEMOVED		
VOLUME TO BE REMOVED Gallons per foot of casing:	0.167	
Column of water length (feet):	/3	
Volume of casing (gallons):		
Number of volumes to be evacuated:	5	
Total volume to be evacuated (gallons)	7,55	• •
Method of Purging (pump, bailer, etc.)	: Peristaltic lump	
FIELD ANALYSIS	O galler 7.5 gal	los
	Start Mid	End
Time	1146 1221	
pH	6,59 6,86	
Conductivity (nmHOS) mg/cm	-322 .499	
Temperature (celsius) millwolts	18.2 14.7 -058	
Total Volume Purged: 7.6	_ gallons	
	6	
Sample Time: 1025	Sample No.: MW ~ Z	2
Parameters: BTEX, DEH?		
Comments: Mw-ZZ was sam	pked using a	peristattic pune
dils	101 1 1 41	•
atilizing a ovell	uent went libin	7
Signed/Sampler:		Date: 27/09/16
Signeu/Sampier.	1	Date. Pilott
Signed/Reviewer:		Date:

WEJVEW

NUMBER POR NOTIFIED TO BE THE POR

Well No.: MW-26 Date:	07/08/96	Time: 1030	
Boring Diameter: ~8"	Well Casing Diam	neter: _ 4"	
Annular Space Length:	Stickup: #2.5 4	Ged	
COLUMN OF WATER IN WELL Casing Length (feet): DTW Top of Casing (feet): Column of Water in Well (feet):	14.30 8,27 6-08	· ·	
VOLUME TO BE REMOVED Gallons per foot of casing: Column of water length (feet): Volume of casing (gallons): Number of volumes to be evacuated: Total volume to be evacuated (gallons)	8.65 6.08 3.95 5		
Method of Purging (pump, bailer, etc.):	Bower		
Time pH Conductivity (nmHOS) ms/cm Temperature (celsius) Total Volume Purged:	0 gallons	10gallons 15gallons End 1050 1101 6.71 6.66 -555 -713 16.6 (7.2 -088 -095	1110 6.74 -799 1614
Sample Time:	Sample No.: _mw-7 (, 2	
Comments:			-
			-
Signed/Sampler: R. Burns	<u> </u>	Date: 7/9/96	-
Signed/Reviewer:		Date:	-

APPENDIX H GROUNDWATER DATA PACKAGE SUMMARY PAGES

Weston Environmental Metrics, Inc. (Gulf Coast) METHOD 624 VOLATILES

		METHOD 624 V			Report Date: 05	5/17/96 14:39
RFW Batch Number: 9605L149	<u>Client: L.E.</u>	Carpenter	<u>Work</u>	<u> Order: 06720-0</u>	020-002-0	Page: 1a
Cust ID:	TB-01	FB-01S	FB-01W	BW-8	BW-7	BW-6
Sample RFW#: Information Matrix:	005 WATER	006 WATER	007 WATER	010 WATER	011 WATER	012 WATER
D.F.: Units:	UG/L	UG/L ¹	1 UG/L	UG/L	UG/L	UG/L
1,2-Dichloroethane-d4 Surrogate Toluene-d8 Recovery 4-Bromofluorobenzene	108 % 104 % 99 %	107 % 100 % 100 %	105 % 102 % 97 %	108 % 99 % 100 %	109 % 102 % 101 %	105 % 102 % 100 %
Chloromethane Vinyl chloride Bromomethane Chloroethane 1,1-Dichloroethene Acetone Carbon Disulfide Methylene Chloride 1,2-Dichloroethene (total) 1,1-Dichloroethane 2-Butanone Chloroform 1,1,1-Trichloroethane Carbon Tetrachloride Benzene 1,2-Dichloropethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene 2-Hexanone Dibromochloromethane Chlorobenzene Ethylbenzene *= Outside of EPA CLP QC limits.	5 U U U U U U U U U U U U U U U U U U U	555525525555552121115555315545		5555215555552121115555315545		f 000000000000000000000000000000000000

RFW Batch Number: 9605L149	Client: L.E.	Carpenter	Work C	order: 06720-02	0-002-0	Page: 1b
Cust ID:	TB-01	FB-01S	FB-01W	BW-8	BW-7	BW-6
RFW#:	005	006	007	010	011	012
Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylene (total) *= Outside of EPA CLP QC limits.	5 U 4 U 2 U 5 U	5 U 4 U 2 U 5 U	5 U 4 U 2 U 5 U	5 U 4 U 2 U 5 U	5 U 4 U 2 U 5 U	5 U 4 U 2 U 5 U

Weston Environmental Metrics, Inc. (Gulf Coast)

METHOD 624 VOLATILES

Report Date: 05/17/96 14:39

RFW Batch Number: 9605L149 Client: L.E. Carpenter Work Order: 06720-020-002-0 Page: 2a Cust ID: VBLKTN **VBLKTN BS** Sample RFW#: **96GVE161-MB1** 96GVE161-MB1 Information WATER WATER Matrix: D.F.: Units: UG/L UG/L 1.2-Dichloroethane-d4 102 108 Surrogate 99 Toluene-d8 103 4-Bromofluorobenzene Recovery 104 102 Chloromethane 5 Vinyl chloride U 94 Bromomethane 86 Chloroethane 106 1.1-Dichloroethene 112 122 Acetone Carbon Disulfide 102 25 Methylene Chloride 108 1.2-Dichloroethene (total) 102 1.1-Dichloroethane 93 2-Butanone 108 % Chloroform 92 1.1.1-Trichloroethane 100

> 96 100

> > 94

95

U

4 U

U

Bromodichloromethane 107 U cis-1,3-Dichloropropene U 117 4-Methyl-2-pentanone 120 U Toluene trans-1,3-Dichloropropene U 121 1.1.2-Trichloroethane 93 U Tetrachloroethene 94 U 114 2-Hexanone U 5 Dibromochloromethane 106 U

Ethylbenzene
*= Outside of EPA CLP QC limits.

Carbon Tetrachloride

Benzene

1.2-Dichloroethane

1,2-Dichloropropane

Trichloroethene

Chlorobenzene

RFW Batch Number: 9605L149	Client: L.E	. Carpenter	•	Work Order: 06720	-020-002-0	Page:	2b
Cust ID	: VBLKTN	VBLKTN BS					
RFW#	96GVE161-MB1	96GVE161-M	IB1	·			
Styrene	5 U	97	%				
Bromoform	4 Ü	93	%				
1,1,2,2-Tetrachloroethane	_ 2 U	98	%				
Xylene (total)	_ 5 U	96	%				
<pre>*= Outside of EPA CLP QC limits.</pre>							

Attn: Ms. Tammy Edgington

Date: Friday May 17th, 1996

RE: TB-01

Project # 06720-020-002-0108

Lab ID: **9605L149-005** Sample Date: 05/09/96 Date Received: 05/10/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Friday May 17th, 1996

RE: **FB-01S**

Project # 06720-020-002-0108

Lab ID: 9605L149-006 Sample Date: 05/09/96 Date Received: 05/10/96

Units: ug/L

Tentatively Identified Compounds

To: L.E. Carpenter

Roy F. Weston Incorporated 208 Welsh Pool Road

Lionville, PA 19341-1225

Attn: Ms. Tammy Edgington

Date: Friday May 17th, 1996

RE: **FB-01W**

Project # 06720-020-002-0108

Lab ID: **9605L149-007** Sample Date: 05/09/96 Date Received: 05/10/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Friday May 17th, 1996

RE: **BW-8**

Project # 06720-020-002-0108

Lab ID: **9605L149-010** Sample Date: 05/09/96 Date Received: 05/10/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Friday May 17th, 1996

RE: **BW-7**

Project # 06720-020-002-0108

Lab ID: **9605L149-011**Sample Date: 05/09/96
Date Received: 05/10/96

Units: ug/L

Tentatively Identified Compounds

	Retention	
Volatile Compound	Time	Concentration
Unknown	16.803	2 J
HYDROCARBON C7H14	18.762	4 J

Attn: Ms. Tammy Edgington

Date: Friday May 17th, 1996

RE: **BW-6**

Project # 06720-020-002-0108

Lab ID: **9605L149-012** Sample Date: 05/09/96 Date Received: 05/10/96

Units: ug/L

Tentatively Identified Compounds

Report Date: 05/20/96 08:58

Weston Environmental Metrics, Inc. (Gulf Coast)
METHOD 624 VOLATILES

RFW Batch Number: 96	05L188	Client: L.E.	Carpenter		Order: 06720-0	20-002-0	Page: 1a
	Cust ID:	TB-02	FB-02S	FB-02W	BW-3	BW-2	BW-2
Sample Information	RFW#: Matrix: D.F.: Units:	002 WATER 1 UG/L	003 WATER 1 UG/L	004 WATER 1 UG/L	010 WATER 1 UG/L	011 WATER 1000 UG/L	011 DL WATER 2500 UG/L
Surrogate Recovery 4-Bromo	loroethane-d4 Toluene-d8 fluorobenzene	110 % 101 % 99 %	111 % 101 % 100 %	110 % 104 % 100 %	109 % 105 % 99 %	113 % 103 % 102 %	108 % 99 % 99 %
Chloromethane Vinyl chloride Bromomethane Chloroethane 1,1-Dichloroethene Acetone Carbon Disulfide Methylene Chloride 1,2-Dichloroethane 2-Butanone Chloroform 1,1,1-Trichloroethane Carbon Tetrachloride Benzene 1,2-Dichloroethane	total) e_ ene opene e	5555255255555212111555531	55552552555552121115555315545	55552552555552121115555315545	5555255555552121115535315545	5000 U 5000 U 5000 U 5000 U 5000 U 5000 U 5000 U 5000 U 5000 U 5000 U 5000 U 5000 U 1000 U 5000 U 5000 U 5000 U 7600 U	NA NA NA NA NA NA NA NA NA NA NA NA NA N

RFW Batch Number: 9605L188	Client: L.E.	Carpenter	Work Oi	rder: 06720-0 3	20-002-0	Page: 1b
Cust ID:	TB-02	FB-02S	FB-02W	BW-3	BW-2	BW-2
RFW#:	002	003	004	010	011	011 DL
Styrene Bromoform 1,1,2,2-Tetrachloroethane Xylene (total) *= Outside of EPA CLP QC limits.	5 U 4 U 2 U 5 U	5 U 4 U 2 U 5 U	5 U 4 U 2 U 5 U	5 U 4 U 2 U 5 U	5000 U 4000 U 2000 U 41000	NA NA NA NA

Report Date: 05/20/96 08:58

Weston Environmental Metrics, Inc. (Gulf Coast)

METHOD 624 VOLATILES

RFW Batch Number: 9605L188 Client: L.E. Carpenter Work Order: 06720-020-002-0 Page: 2a Cust ID: BW-11 BW-1 **VBLKTN VBLKTN BS VBLKUF VBLKUF BS** Sample RFW#: 012 013 96GVE161-MB1 96GVE161-MB1 96GVE162-MB1 96GVE162-MB1 Information Matrix: WATER WATER WATER WATER WATER WATER D.F.: Units: UG/L UG/L UG/L UG/L UG/L UG/L 1,2-Dichloroethane-d4 109 109 102 108 109 113 Surrogate Toluene-d8 100 100 99 102 103 104 4-Bromofluorobenzene Recovery 103 102 104 102 106 104 Chloromethane 5 **%** % % Vinyl chloride_____ П 82 U U 94 Bromomethane 76 86 U Chloroethane T 106 92 U П 1.1-Dichloroethene____ 100 2 112 2 Ш Acetone U 122 10 Carbon Disulfide 102 90 U Ш Methylene Chloride 103 2 11 108 2 U 1,2-Dichloroethene (total) 102 1.1-Dichloroethane 94 U 2-Butanone 101 Chloroform T 94 92 1.1.1-Trichloroethane 100 104 Carbon Tetrachloride 97 96 Benzene 100 101 1.2-Dichloroethane 11 105 Trichloroethene U 94 1,2-Dichloropropane 96 97 U U Bromodichloromethane H 107 Ш 106 cis-1,3-Dichloropropene____ U 117 U 119 4-Methyl-2-pentanone 113 Ш U Toluene 98 U 102 Ш trans-1,3-Dichloropropene____ 131 U U 1,1,2-Trichloroethane____ 95 Ш U Tetrachloroethene____ 96 94 Ш U 112 2-Hexanone 114 U U Dibromochloromethane____ U Ш 106 IJ 109 Chlorobenzene 100 U Ethylbenzene Ш 104 *= Outside of EPA CLP QC limits.

A >	
\mathcal{V}	
(24	

RFW Batch Number: 9605L188	Client: L.E. C	arpenter	Wor	rk Order: 0672 0	-020-002-0	Page: 2b	
Cust ID:	BW-11	BW-1	VBLKTN	VBLKTN BS	VBLKUF	VBLKUF BS	
RFW#:	012	013	96GVE161-MB1	96GVE161-MB1	96GVE162-MB1	96GVE162-MB1	2
Styrene Bromoform	5 U 4 U	5 U 4 U	5 U 4 U	97 % 93 %	5 U 4 U	102 % 96 %	
1,1,2,2-Tetrachloroethane Xylene (total) *= Outside of FPA CLP OC limits	2 U 5 U	2 U 5 U	2 U 5 U	98 % 96 %	2 U 5 U	98 % 103 %	

.

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: TB-02

Project # 06720-020-002-0108

Lab ID: **9605L188-002** Sample Date: 05/10/96 Date Received: 05/13/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: **FB-02S**

Project # 06720-020-002-0108

Lab ID: **9605L188-003** Sample Date: 05/10/96 Date Received: 05/13/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: FB-02W

Project # 06720-020-002-0108 Lab ID: **9605L188-004** Sample Date: 05/10/96 Date Received: 05/13/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: **BW-3**

Project # 06720-020-002-0108 Lab ID: **9605L188-010** Sample Date: 05/10/96 Date Received: 05/13/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: **BW-2**

Project # 06720-020-002-0108

Lab ID: 9605L188-011 Sample Date: 05/10/96 Date Received: 05/13/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: BW-11

Project # 06720-020-002-0108

Lab ID: **9605L188-012** Sample Date: 05/10/96 Date Received: 05/13/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Monday May 20th, 1996

RE: BW-1

Project # 06720-020-002-0108

Lab ID: **9605L188-013** Sample Date: 05/10/96 Date Received: 05/13/96

Units: ug/L

Tentatively Identified Compounds

Weston Environmental Metrics, Inc. (Gulf Coast)

METHOD 624 VOLATILES Report Date: 05/20/96 15:13 RFW Batch Number: 9605L215 Client: L.E. Carpenter Work Order: 06720-020-002-0 Page: Cust ID: FB-03W **BW-4** BW-4 BW-9 BW-5 Sample RFW#: 007 800 008 DL 011 MS 010 011 Information Matrix: WATER WATER WATER WATER WATER WATER D.F. 1000 2500 Units: UG/L UG/L UG/L UG/L UG/L UG/L 1,2-Dichloroethane-d4 111 112 112 106 108 Surrogate Toluene-d8 101 101 89 100 92 104 Recovery 4-Bromofluorobenzene 104 % 103 93 93 101 102 =====f]======f]======f] Chloromethane 5000 U NA 78 Vinyl chloride 5 5 U 5000 NA 5 П H 84 U Bromomethane U 5000 NA U 80 Chloroethane T U 5000 U NA U 5 U 95 1.1-Dichloroethene U 2 108 2000 U NA П Ш Acetone U 10000 В NA 9 В 24 B 53 Carbon Disulfide u 5 87 5000 П NA H 14 Methylene Chloride 2 2 109 2000 U NA U Ħ 1.2-Dichloroethene (total) U. 5000 NA U 108 1.1-Dichloroethane 5 5000 NA U 87 2-Butanone Ü 5000 NA 87 11 64 Chloroform U 5000 NA U 89 1.1.1-Trichloroethane U NA 90 U 5000 Carbon Tetrachloride NA 2 2 86 2000 Benzene 1000 NA 97 1.2-Dichloroethane NA 2 98 2000 Trichloroethene U NA 85 1000 1.2-Dichloropropane 94 1000 NA Bromodichloromethane U 1000 NA 107 cis-1.3-Dichloropropene U 123 5000 NA 4-Methyl-2-pentanone U 5000 U NA 190 43* Toluene U 200000 101 trans-1.3-Dichloropropene NA 124 5000 U Н 1.1.2-Trichloroethane 3000 NA 106 Tetrachloroethene U 1000 NA 89 U 2-Hexanone Ш 96 5000 NA Dibromochloromethane U 5000 5 5 131 NA U U Chlorobenzene Chlorobenzene 4000 NA Ш U 93 Ethylbenzene 7600 NA 5 5 87 *= Outside of EPA CLP QC limits

RFW Batch Number: 9605L215		Carpenter	Work	Order: 06720-02	0-002-0	Page: 1b
Cust ID:	FB-03W	BW-4	BW-4	BW-9	BW-5	BW-5
RFW#:	007	008	008 DL	010	011	011 MS 60
Styrene Bromoform 1,1,2,2-TetrachToroethane Xylene (total) *= Outside of EPA CLP QC limits.	5 U 4 U 2 U 5 U	5000 U 4000 U 2000 U 38000	NA NA NA NA	5 U 4 U 2 U 5 U	5 U 4 U 2 U 1 J	90 % 102 % 100 % 94 %

Weston Environmental Metrics, Inc. (Gulf Coast)

RFW Batch Number: 9605L215	Client: L	METHOD 624 .E. Carpenter	VOLATILES	rk Order: <mark>0672</mark> 0	Report Date: - 020-002-0	05/20/96 15:13 Page: 2a
Cust	ID: BW-5	FB-03S	TB5-13	VBLKUF	VBLKUF BS	010
Information Matr	FW#: 011 MSD rix: WATER F.: 1	012 WATER 1	013 WATER 1	96GVE162-MB1 WATER 1	96GVE162-MB1 WATER 1	
	ts: UG/L	UG/L	UG/L	UG/L	UG/L	
1,2-Dichloroethane Surrogate Toluene Recovery 4-Bromofluorobenz	e-d8 102	% 110 % 101 % 105 % 105	113 % 101 % 100 %	113 % 104 % 106 %	109 % 102 % 104 %	
Chloromethane Vinyl chloride Bromomethane Chloroethane 1,1-Dichloroethene Acetone Carbon Disulfide Methylene Chloride 1,2-Dichloroethane 2-Butanone Chloroform 1,1,1-Trichloroethane Carbon Tetrachloride Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene 2-Hexanone Dibromochloromethane Chlorobenzene Ethylbenzene *= Outside of EPA CLP QC Timit	70 82 100 58 82 101 98 89 46 90 102 95 91 108 88 91 104 113 31 103 124 95 88 112 108 90 86	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	=======f 555525525552121115525315545	555521052555552121115555315545		/=======f]

RFW Batch Number: 9605L215	Client: L.E	. Carpenter	Wor	rk Order: 06720	-020-002-0	Page: 2b
Cust ID:	BW-5	FB-03S	TB5-13	VBLKUF	VBLKUF BS	
RFW#:	011 MSD	012	013	96GVE162-MB1	96GVE162-MB1	H
Styrene	83* % 96 % 105 % 95 %	5 U 4 U 2 U 5 U	5 U 4 U 2 U 5 U	5 U 4 U 2 U 5 U	102 % 96 % 98 % 103 %	

Attn: Ms. Tammy Edgington

Date: Tuesday May 21st, 1996

RE: **FB-03W**

Project # 06720-020-002-0108 Lab ID: **9605L215-007** Sample Date: 05/13/96 Date Received: 05/14/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Tuesday May 21st, 1996

RE: **BW-4**

Project # 06720-020-002-0108 Lab ID: **9605L215-008**

Lab ID: **9605L215-008**Sample Date: 05/13/96
Date Received: 05/14/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Tuesday May 21st, 1996

RE: **BW-9**

Project # 06720-020-002-0108

Lab ID: **9605L215-010** Sample Date: 05/13/96 Date Received: 05/14/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Tuesday May 21st, 1996

RE: **BW-5**

Project # 06720-020-002-0108

Lab ID: **9605L215-011** Sample Date: 05/13/96 Date Received: 05/14/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Tuesday May 21st, 1996

RE: **FB-03S**

Project # 06720-020-002-0108 Lab ID: **9605L215-012**

Lab ID: **9605L215-012** Sample Date: 05/13/96 Date Received: 05/14/96

Units: ug/L

Tentatively Identified Compounds

Attn: Ms. Tammy Edgington

Date: Tuesday May 21st, 1996

RE: **TB5-13**

Project # 06720-020-002-0108

Lab ID: **9605L215-013**Sample Date: 05/13/96
Date Received: 05/14/96

Units: ug/L

Tentatively Identified Compounds

Client ID: FB-1

Site: L.E. Carpenter '96

Lab Sample No: 52731 Lab Job No: N781

Date Sampled: 06-14-96 Date Received: 06-14-96

Date Analyzed: 06-18-96 GC Column: DB624 Instrument ID: VOAGC3 Lab File ID: ipid0425.d

Matrix: WATER Level: Low

Purge Volume: 5.0 ml Dilution Factor: 1.0

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	0.10
Toluene	ND	0.14
Ethylbenzene	ND	0.14
Xylene (Total)	ND	0.50

Client ID: FB-1 Site: L.E. Carpenter '96

Lab Sample No: 52731 Lab Job No: N781

Date Sampled: 06-14-96

Date Received: 06-14-96

Date Extracted: 06-20-96

Date Analyzed: 06-26-96

GC Column: DB-5
Instrument ID: BNAMS3

Matrix: WATER Level: LOW

Sample Volume: 840 ml

Extract Final Volume: 2.0 ml

Dilution Factor: 1.0

Lab File ID: t5885.d

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

Analytical Result Units: uq/l

Method Detection Limit Units: uq/l

<u>Parameter</u>

bis(2-Ethylhexyl)phthalate

ND

1.4

Client ID: MW-15I

Site: L.E. Carpenter '96

Lab Sample No: 52732 Lab Job No: N781

Date Sampled: 06-14-96 Date Received: 06-14-96 Date Analyzed: 06-22-96 GC Column: DB624

Instrument ID: VOAGC3 Lab File ID: ipid0464.d Matrix: WATER Level: Low

Purge Volume: 5.0 ml Dilution Factor: 1.0

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	0.10
Toluene	ND	0.14
Ethylbenzene	ND	0.14
Xylene (Total)	ND	0.50

Client ID: MW-15I

Site: L.E. Carpenter '96

Date Sampled: 06-14-96

Date Received: 06-14-96 Date Extracted: 06-20-96

Date Analyzed: 06-26-96

GC Column: DB-5
Instrument ID: BNAMS3

Lab Sample No: 52732

Lab Job No: N781

Matrix: WATER

Level: LOW

Sample Volume:

970 ml

Extract Final Volume: Dilution Factor: 1.0

Lab File ID: t5886.d

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

Analytical Result <u>Parameter</u>

Units: ug/l

Method Detection

Limit

Units: ug/l

bis(2-Ethylhexyl)phthalate

ND

1.2

Client ID: MW-4

Site: L.E. Carpenter '96

Lab Sample No: 52733 Lab Job No: N781

Date Sampled: 06-14-96 Date Received: 06-14-96

Date Analyzed: 06-22-96

GC Column: DB624
Instrument ID: VOAGC3
Lab File ID: ipid0465.d

Matrix: WATER Level: Low

Purge Volume: Dilution Factor: 1.0

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	0.10
Toluene	ND	0.14
Ethylbenzene	7.0	0.14
Xylene (Total)	7.8	0.50

Client ID: MW-4

Site: L.E. Carpenter '96

Lab Sample No: 52733 Lab Job No: N781

Date Sampled: 06-14-96 Date Received: 06-14-96

Date Extracted: 06-20-96 Date Analyzed: 06-28-96

GC Column: DB-5
Instrument ID: BNAMS3

Matrix: WATER Level: LOW

Sample Volume: 950 ml

Extract Final Volume: 2.0 ml

Dilution Factor: 100.0 Lab File ID: t5909.d

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

Method Detection Analytical Result Limit <u>Parameter</u> Units: uq/l Units: uq/l

9300 bis(2-Ethylhexyl)phthalate 120

Client ID: MW-17S

Site: L.E. Carpenter '96

Lab Sample No: 52734 Lab Job No: N781

Date Sampled: 06-14-96 Date Received: 06-14-96

Date Analyzed: 06-22-96

GC Column: DB624

Instrument ID: VOAGC3 Lab File ID: ipid0466.d Matrix: WATER Level: Low

Purge Volume: 5.0 ml Dilution Factor: 1.0

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	0.10
Toluene	ND	0.14
Ethylbenzene	ND	0.14
Xylene (Total)	. N D	0.50

Client ID: MW-17S

Site: L.E. Carpenter '96

Lab Sample No: 52734 Lab Job No: N781

Date Sampled: 06-14-96

Date Received: 06-14-96

Date Extracted: 06-20-96

Date Analyzed: 06-25-96

GC Column: DB-5
Instrument ID: BNAMS3

Matrix: WATER Level: LOW

Sample Volume: 900 ml

Extract Final Volume: 2.0 ml

Dilution Factor: 1.0

Lab File ID: t5881.d

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

Analytical Result Units: uq/l <u>Parameter</u>

Method Detection Limit <u>Units: uq/l</u>

bis(2-Ethylhexyl)phthalate

ND

1.3

Client ID: MW-3D

Site: L.E. Carpenter '96

Lab Sample No: 52735 Lab Job No: N781

Date Sampled: 06-14-96 Date Received: 06-14-96

Date Analyzed: 06-22-96

GC Column: DB624

Instrument ID: VOAGC3 Lab File ID: ipid0467.d Matrix: WATER Level: Low

Purge Volume: $5.0 \, ml$ Dilution Factor: 1.0

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	0.10
Toluene	ND ND	0.14
Ethylbenzene	ND	0.14
Xylene (Total)	ND	0.50

Client ID: MW-3D

Site: L.E. Carpenter '96

Lab Sample No: 52735 Lab Job No: N781

Date Sampled: 06-14-96 Date Received: 06-14-96

Date Extracted: 06-20-96

Date Analyzed: 06-26-96

GC Column: DB-5

Instrument ID: BNAMS3

Matrix: WATER Level: LOW

Sample Volume: 920 ml

Extract Final Volume:

Dilution Factor: 1.0 Lab File ID: t5888.d

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

Analytical Result Units: uq/l

Method Detection Limit Units: uq/l

<u>Parameter</u>

bis(2-Ethylhexyl)phthalate

ND

1.2

Client ID: MW-15S Site: L.E. Carpenter '96

Lab Sample No: 52736

Lab Job No: N781

Date Sampled: 06-14-96 Date Received: 06-14-96

Date Analyzed: 06-22-96 GC Column: DB624 Instrument ID: VOAGC3 Lab File ID: ipid0468.d

Matrix: WATER

Level: Low Purge Volume: 5.0 ml

Dilution Factor: 1.0

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	0.10
Toluene	ND	0.14
Ethylbenzene	ND	0.14
Xylene (Total)	ND	0.50

Client ID: MW-15S

Site: L.E. Carpenter '96

Lab Sample No: 52736 Lab Job No: N781

Date Sampled: 06-14-96

Date Received: 06-14-96

Date Extracted: 06-20-96

Date Analyzed: 06-26-96

GC Column: DB-5
Instrument ID: BNAMS3

Matrix: WATER Level: LOW

Sample Volume: 940 ml

Extract Final Volume: 2.0 ml

Dilution Factor: 1.0

Lab File ID: t5889.d

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

Analytical Result Units: uq/l

Method Detection Limit

Units: uq/l

<u>Parameter</u>

bis(2-Ethylhexyl)phthalate

ND

1.2

Client ID: MW-25 Site: L.E. Carpenter '96

Lab Sample No: 52737 Lab Job No: N781

Date Sampled: 06-14-96 Date Received: 06-14-96

Date Analyzed: 06-22-96 GC Column: DB624 Instrument ID: VOAGC3 Lab File ID: ipid0469.d

Matrix: WATER Level: Low

Purge Volume: 5.0 ml Dilution Factor: 1.0

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	0.10
Toluene	ND	0.14
Ethylbenzene	ND	0.14
Xylene (Total)	ND	0.50

Client ID: MW-25 Site: 14-6-96

Lab Sample No: 52737 Lab Job No: N781

Date Sampled: 06-14-96 Date Received: 06-14-96 Date Extracted: 06-20-96

Matrix: WATER Level: LOW

Date Analyzed: 06-26-96

Sample Volume: 950 ml Extract Final Volume: 2.0 ml

GC Column: DB-5

<u>Parameter</u>

Dilution Factor: 1.0 Lab File ID: t5890.d

Instrument ID: BNAMS3

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

> Analytical Result Units: uq/l

Method Detection Limit Units: uq/l

bis(2-Ethylhexyl)phthalate

ND

1.2

Client ID: MW-14I

Site: L.E. Carpenter '96

Lab Sample No: 52738 Lab Job No: N781

Date Sampled: 06-14-96 Date Received: 06-14-96

Date Analyzed: 06-23-96 GC Column: DB624 Instrument ID: VOAGC3

Lab File ID: ipid0473.d

Matrix: WATER Level: Low

Purge Volume: 5.0 ml Dilution Factor: 1.0

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	0.10
Toluene	ND	0.14
Ethylbenzene	ND	0.14
Xylene (Total)	ND	0.50

Client ID: MW-14I

Site: L.E. Carpenter '96

Lab Sample No: 52738

Lab Job No: N781

06-14-96 Date Sampled:

Date Received: 06-14-96

Date Extracted: 06-20-96

Date Analyzed: 06-26-96

GC Column: DB-5
Instrument ID: BNAMS3

Matrix: WATER

Level: LOW

Sample Volume: 870 ml

Extract Final Volume:

Dilution Factor: 1.0

Lab File ID: t5891.d

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

Analytical Result Parameter

Units: ug/l Units: uq/l

bis(2-Ethylhexyl)phthalate

ND

1.3

Limit

Method Detection

Client ID: Trip_Blank Site: L.E. Carpenter '96

Lab Sample No: 52739 Lab Job No: N781

Date Sampled: 06-12-96 Date Received: 06-14-96 Date Analyzed: 06-18-96 Matrix: WATER Level: Low

Purge Volume: 5.0 ml Dilution Factor: 1.0

GC Column: DB624 Instrument ID: VOAGC3 Lab File ID: ipid0424.d

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	0.10
Toluene	ND	0.14
Ethylbenzene	ND	0.14
Xylene (Total)	ND	0.50

Client ID: MW-26

Site: L.E. Carpenter '96

Lab Sample No: 54859 Lab Job No: P101

Date Sampled: 07-08-96 Date Received: 07-08-96
Date Analyzed: 07-16-96
GC Column: DB624
Instrument ID: VOAGC3

Matrix: WATER Level: Low

Lab File ID: ipid0695.d

Purge Volume: 5.0 ml Dilution Factor: 2.0

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	0.20
Toluene	ND	0.28
Ethylbenzene	0.86	0.28
Xylene (Total)	1.1	1.0

Client ID: MW-26

Site: L.E. Carpenter '96

Lab Sample No: 54859 Lab Job No: P101

Date Sampled: 07-08-96

Date Received: 07-08-96 Date Extracted: 07-10-96

Date Analyzed: 07-23-96

GC Column: DB-5 Instrument ID: BNAMS2

Matrix: WATER Level: LOW

Sample Volume: 820 ml

Extract Final Volume:

Dilution Factor: 1.0 Lab File ID: s5262.d

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

Method Detection Analytical Result Limit Parameter Units: ug/l Units: uq/l

bis(2-Ethylhexyl)phthalate

Client ID: MW-22

Site: L.E. Carpenter '96

Lab Sample No: 54860 Lab Job No: P101

Date Sampled: 07-08-96 Date Received: 07-08-96

Date Analyzed: 07-16-96 GC Column: DB624 Instrument ID: VOAGC3 Lab File ID: ipid0696.d

Matrix: WATER Level: Low

Purge Volume: 5.0 ml Dilution Factor: 20.0

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>		
Benzene	· ND	2.0		
Toluene	ND	2.8		
Ethylbenzene	258	2.8		
Xylene (Total)	941	10		

Client ID: MW-22

Site: L.E. Carpenter '96

Lab Sample No: 54860 Lab Job No: P101

Date Sampled: 07-08-96

Date Received: 07-08-96 Date Extracted: 07-10-96

Date Analyzed: 07-23-96

GC Column: DB-5

Instrument ID: BNAMS2

Matrix: WATER Level: LOW

Sample Volume: 1000 ml

Extract Final Volume: 2.0 ml

Dilution Factor: 1.0 Lab File ID: s5263.d

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

Analytical Result Limit

Parameter Units: ug/l Units: ug/l

bis(2-Ethylhexyl)phthalate

70

1.1

Client ID: MW-31

Site: L.E. Carpenter '96

Lab Sample No: 54861 Lab Job No: P101

Date Sampled: 07-08-96 Date Received: 07-08-96 Date Analyzed: 07-13-96 GC Column: DB624

Instrument ID: VOAGC3 Lab File ID: ipid0672.d Matrix: WATER Level: Low

Purge Volume: Dilution Factor: 100.0

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>		
Benzene	ND	10		
Toluene	ND	14		
Ethylbenzene	1130	14		
Xylene (Total)	4610	50		

Client ID: MW-31

Site: L.E. Carpenter '96

Lab Sample No: 54861

Lab Job No: P101

Date Sampled: 07-08-96

Date Received: 07-08-96

Date Extracted: 07-10-96

Date Analyzed: 07-25-96

Parameter

GC Column: DB-5
Instrument ID: BNAMS2

Matrix: WATER

Level: LOW

Sample Volume: 920 ml

Extract Final Volume: 2.0 ml

Dilution Factor: 5.0 Lab File ID: s5307.d

SEMI-VOLATILE ORGANICS - GC/MS

METHOD 625

Analytical Result Units: ug/l

Limit Units: uq/l

Method Detection

bis(2-Ethylhexyl)phthalate

490

6.2

6

Client ID: MW-12R

Site: L.E. Carpenter '96

Lab Sample No: 54862 Lab Job No: P101

Date Sampled: 07-08-96 Date Received: 07-08-96 Date Analyzed: 07-16-96

Matrix: WATER Level: Low

Purge Volume: 5.0 ml Dilution Factor: 100.0

GC Column: DB624
Instrument ID: VOAGC3
Lab File ID: ipid0697.d

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	10
Toluene	ND	14
Ethylbenzene	1040	14
Xylene (Total)	4150	50

Client ID: MW-12R

Site: L.E. Carpenter '96

Lab Sample No: 54862 Lab Job No: P101

Date Sampled: 07-08-96

Date Received: 07-08-96

Date Extracted: 07-10-96 Date Analyzed: 07-25-96

<u>Parameter</u>

GC Column: DB-5 Instrument ID: BNAMS2

Matrix: WATER

Level: LOW

Sample Volume: 980 ml

Extract Final Volume: 2.0 ml

Method Detection

Limit

Units: uq/l

Dilution Factor: 5.0 Lab File ID: s5308.d

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

Analytical Result

Units: uq/l

5.8

bis(2-Ethylhexyl)phthalate 460

Client ID: FB070896

Site: L.E. Carpenter '96

Lab Sample No: 54863 Lab Job No: P101

Date Sampled: 07-08-96 Date Received: 07-08-96

Date Analyzed: 07-15-96 GC Column: DB624 Instrument ID: VOAGC3 Lab File ID: ipid0683.d

Matrix: WATER Level: Low

Purge Volume: 5.0 ml Dilution Factor: 1.0

Parameter	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	0.10
Toluene	ND	0.14
Ethylbenzene	ND	0.14
Xylene (Total)	ND	0.50

Client ID: FB070896

Site: L.E. Carpenter '96

Lab Sample No: 54863 Lab Job No: P101

2.0 ml

Date Sampled: 07-08-96 Matrix: WATER Date Received: 07-08-96 Level: LOW

Date Extracted: 07-10-96 Sample Volume: 970 ml

Date Analyzed: 07-23-96 Extract Final Volume:

GC Column: DB-5 Instrument ID: BNAMS2 Dilution Factor: 1.0 Lab File ID: s5266.d

> SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

Method Detection Analytical Result Limit Parameter <u>Units: uq/l</u> <u>Units: ug/l</u>

bis(2-Ethylhexyl)phthalate ND 1.2

Client ID: Trip_Blank Site: L.E. Carpenter '96

Lab Sample No: 54864 Lab Job No: P101

Date Sampled: 07-08-96 Date Received: 07-08-96 Date Analyzed: 07-15-96

Matrix: WATER Level: Low

GC Column: DB624

Purge Volume: 5.0 ml Dilution Factor: 1.0

Instrument ID: VOAGC3 Lab File ID: ipid0682.d

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Benzene	ND	0.10
Toluene	ND	0.14
Ethylbenzene	ND	0.14
Xylene (Total)	ND	0.50

U.S. EPA - CLP

		INORGANIC	1 ANALYSES DATA :	SHE	ET	EPA SAMPLE NO.
trix (soil/w vel (low/med Solids:	vater): WATE l): LOW_ 0.	R O	Contract: 6' SAS No.	La	ib Samp ite Rec	WP-A7S SDG No.: WP-A7S le ID: 9607L058-00 eived: 07/10/96
Co			/L or mg/kg dry	П		
	CAS No.	_	Concentration	1 1	Q	M
	7439-92-1	Lead	2.8	=	N*	F_
				-		
			<u> </u>	-		
				-		
				_		
				-		 _
				-		
	·		-			
				_		
						- .
<u>ነ</u> :				-		
7 1				-		
		-		$\left - \right $		
P.						
				-		
				-		
				_		
or Before:		Clari Clari	ty Before: ty After:			Texture: Artifacts:
			- " '		•	
mments:						
3						· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·

FORM I - IN

0000013

U.S. EPA - CLP

		INORGANIC .	ANALYSES DATA S	SHE	EET	EPA SAMPLE NO.
trix (soil/w vel (low/med Solids:	ater): WATE): LOW0.0	R 0	Contract: 6	La Da	ib Samp ite Rec	WP-A7T SDG No.: WP-A7S le ID: 9607L058-00 eived: 07/10/96
Co:	1	Units (ug	/L or mg/kg dry	7 W	reight)	: UG/L_ T1
	CAS No.	Analyte	Concentration	С	Q	М
	7439-92-1	Lead	1.6		N*	<u>F_</u>
				-		
			- : - : - : - : : : : : : : : : : : : :	-		
				_		
				-		
						
				\exists		=
				-		_
				_		
				-		
			1	-		
			1 7	_		
or Before: or After:	*****	Clari Clari	ty Before:			Texture: Artifacts:
mments:					•	
4-1-11-1					-	
	·					

FORM I - IN